1,271 research outputs found
Unifying model of driven polymer translocation
We present a Brownian dynamics model of driven polymer translocation, in
which non-equilibrium memory effects arising from tension propagation (TP)
along the cis side subchain are incorporated as a time-dependent friction. To
solve the effective friction, we develop a finite chain length TP formalism,
expanding on the work of Sakaue [Sakaue, PRE 76, 021803 (2007)]. The model,
solved numerically, yields results in excellent agreement with molecular
dynamics simulations in a wide range of parameters. Our results show that
non-equilibrium TP along the cis side subchain dominates the dynamics of driven
translocation. In addition, the model explains the different scaling of
translocation time w.r.t chain length observed both in experiments and
simulations as a combined effect of finite chain length and pore-polymer
interactions.Comment: 7 pages, 3 figure
Realization of two Fourier-limited solid-state single-photon sources
We demonstrate two solid-state sources of indistinguishable single photons.
High resolution laser spectroscopy and optical microscopy were combined at T =
1.4 K to identify individual molecules in two independent microscopes. The
Stark effect was exploited to shift the transition frequency of a given
molecule and thus obtain single photon sources with perfect spectral overlap.
Our experimental arrangement sets the ground for the realization of various
quantum interference and information processing experiments.Comment: 6 page
Molecules as Sources for Indistinguishable Single Photons
We report on the triggered generation of indistinguishable photons by
solid-state single-photon sources in two separate cryogenic laser scanning
microscopes. Organic fluorescent molecules were used as emitters and
investigated by means of high resolution laser spectroscopy. Continuous-wave
photon correlation measurements on individual molecules proved the isolation of
single quantum systems. By using frequency selective pulsed excitation of the
molecule and efficient spectral filtering of its emission, we produced
triggered Fourier-limited single photons. In a further step, local electric
fields were applied to match the emission wavelengths of two different
molecules via Stark effect. Identical single photons are indispensible for the
realization of various quantum information processing schemes proposed. The
solid-state approach presented here prepares the way towards the integration of
multiple bright sources of single photons on a single chip.Comment: Accepted for publication in J. Mod. Opt. This is the original
submitted versio
Quantum Interference of Tunably Indistinguishable Photons from Remote Organic Molecules
We demonstrate two-photon interference using two remote single molecules as
bright solid-state sources of indistinguishable photons. By varying the
transition frequency and spectral width of one molecule, we tune and explore
the effect of photon distinguishability. We discuss future improvements on the
brightness of single-photon beams, their integration by large numbers on chips,
and the extension of our experimental scheme to coupling and entanglement of
distant molecules
Choosing Dielectric or Magnetic Material to Optimize the Bandwidth of Miniaturized Resonant Antennas
We address the question of the optimal choice of loading material for antenna
miniaturization. A new approach to identify the optimal loading material,
dielectric or magnetic, is presented for resonant antennas. Instead of
equivalent resonance circuits or transmission-line models, we use the analysis
of radiation to identify the fields contributing mostly to the stored energy.
This helps to determine the beneficial material type. The formulated principle
is qualitatively illustrated using three antenna types. Guidelines for
different antenna types are presented.Comment: 17 pages, 9 figure
On Impedance Bandwidth of Resonant Patch Antennas Implemented Using Structures with Engineered Dispersion
We consider resonant patch antennas, implemented using loaded
transmission-line networks and other exotic structures having engineered
dispersion. An analytical expression is derived for the ratio of radiation
quality factors of such antennas and conventional patch antennas loaded with
(reference) dielectrics. In the ideal case this ratio depends only on the
propagation constant and wave impedance of the structure under test, and it can
be conveniently used to study what kind of dispersion leads to improved
impedance bandwidth. We illustrate the effect of dispersion by implementing a
resonant patch antenna using a periodic network of LC elements. The analytical
results predicting enhanced impedance bandwidth compared to the reference
results are validated using a commercial circuit simulator. Discussion is
conducted on the practical limitations for the use of the proposed expression.Comment: 4 pages, 7 figure
Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs
In this paper, a spatially dispersive finite-difference time-domain (FDTD)
method to model wire media is developed and validated. Sub-wavelength imaging
properties of the finite wire medium slabs are examined. It is demonstrated
that the slab with its thickness equal to an integer number of half-wavelengths
is capable of transporting images with sub-wavelength resolution from one
interface of the slab to another. It is also shown that the operation of such
transmission devices is not sensitive to their transverse dimensions, which can
be made even comparable to the wavelength. In this case, the edge diffractions
are negligible and do not disturb the image formation.Comment: 14 pages, 13 figures, submitted to Optics Expres
Effects of intensified silviculture on timber production and its economic profitability in boreal Norway spruce and Scots pine stands under changing climatic conditions
201
- …
