11 research outputs found

    The effects of ditch dams on water‐level dynamics in tropical peatlands

    Get PDF
    A significant proportion of tropical peatlands has been drained for agricultural purposes, resulting in severe degradation. Hydrological restoration, which usually involves blocking ditches, is therefore a priority. Nevertheless, the influence of ditch blocking on tropical peatland hydrological functioning is still poorly understood. We studied water-level dynamics using a combination of automated and manual dipwells, and also meteorological data during dry and wet seasons over 6 months at three locations in Sebangau National Park, Kalimantan, Indonesia. The locations were a forested peatland (Forested), a drained peatland with ditch dams (Blocked), and a drained peatland without ditch dams (Drained). In the dry season, water tables at all sites were deeper than the Indonesian regulatory requirement of 40 cm from the peat surface. In the dry season, the ditches were dry and water did not flow to them. The dry season water-table drawdown rates — solely due to evapotranspiration — were 9.3 mm day−1 at Forested, 9.6 mm day−1 at Blocked, but 12.7 mm day−1 at Drained. In the wet season, the proportion of time during which water tables in the wells were deeper than the 40 cm limit ranged between 16% and 87% at Forested, 0% at Blocked, and between 0% and 38% at Drained. In the wet season, water flowed from the peatland to ditches at Blocked and Drained. The interquartile range of hydraulic gradients between the lowest ditch outlet and the farthest well from ditches at Blocked was 3.7 × 10−4 to 7.8 × 10−4 m m−1, but 1.9 × 10−3 to 2.6 × 10−3 m m−1 at Drained. Given the results from Forested, a water-table depth limit policy based on field data may be required, to reflect natural seasonal dynamics in tropical peatlands. Revised spatial designs of dams or bunds are also required, to ensure effective water-table management as part of tropical peatland restoration

    Hydrological properties of bark of selected forest tree species. Part 2: Interspecific variability of bark water storage capacity

    Get PDF
    The subject of the present research is the water storage capacity of bark of seven forest tree species: Pinus sylvestris L., Larix decidua Mill., Abies alba Mill., Pinus sylvestris L., Quercus robur L., Betula pendula Ehrh. and Fagus sylvatica L. The aim of the research is to demonstrate differences in the formation of bark water storage capacity between species and to identify factors influencing the hydrological properties of bark. The maximum water storage capacity of bark was determined under laboratory conditions by performing a series of experiments simulating rainfall and by immersing bark samples in containers filled with water. After each single experiment, the bark samples were subjected to gravity filtration in a desiccator partially filled with water. The experiments lasted from 1084 to 1389 hours, depending on the bark sample. In all the studied species, bark sampled from the thinnest trees is characterized by the highest water storage capacity expressed in mm H2O · cm-3, while bark sampled from the thickest trees - by the lowest capacity. On the other hand, bark sampled from the thickest trees is characterized by the highest water storage capacity expressed in H2O · cm-2 whereas bark from the thinnest trees - by the lowest capacity. In most species tested, as the tree thickness and thus the bark thickness and the coefficient of development of the interception surface of bark increase, the sorption properties of the bark decrease with bark depth, and the main role in water retention is played by the outer bark surface. The bark of European beech is an exception because of the smallest degree of surface development and because the dominant process is the absorption of water. When examining the hydrological properties of bark and calculating its parameters, one needs to take into account the actual surface of the bark of trees. Disregarding the actual bark surface may lead to significant errors in the interpretation of research results

    Hygroscopicity of the bark of selected forest tree species

    No full text

    Hygroscopicity of the bark of selected forest tree species

    No full text
    As the outer layer of trees and shrubs, bark is exposed to the direct action of atmospheric conditions and reacts to changes in relative air humidity. This study focuses on the actual hygroscopicity of the bark, regarded as a component of the total bark retention capability. The main research aims were to: (1) determine the physical properties (specific density, bulk density, total porosity), actual hygroscopicity and maximum water storage capacity of the stem bark at breast height (1.3 m) of eight forest tree species; (2) assess the relationship between bark actual hygroscopicity and its physical properties; (3) determine the share of the actual hygroscopicity of bark in its maximum water storage capacity. Significant differences were observed among the different species considered as a consequence of the variation in physical properties of their bark. Actual hygroscopicity of bark (expressed in balance units), i.e., the maximum water amount that can be absorbed from saturated air by the outer bark layer, showed a significant relationship with bark physical properties. Depending on tree species, actual hygroscopicity may constitute from 10 to 30% of the maximum water storage capacity of bark

    One-step preparation of bilayered films from kraft lignin and cellulose acetate to mimic tree bark

    No full text

    Dendroremediation: The Role of Trees in Phytoextraction of Trace Elements

    No full text
    corecore