827 research outputs found
Half-Metallic Ferromagnetism in the Heusler Compound CoFeSi revealed by Resistivity, Magnetoresistance, and Anomalous Hall Effect measurements
We present electrical transport data for single-crystalline CoFeSi which
provide clear-cut evidence that this Heusler compound is truly a half-metallic
ferromagnet, i.e. it possesses perfect spin-polarization. More specifically,
the temperature dependence of is governed by electron scattering off
magnons which are thermally excited over a sizeable gap
() separating the electronic majority states at the Fermi level
from the unoccupied minority states. As a consequence, electron-magnon
scattering is only relevant at but freezes out at lower
temperatures, i.e., the spin-polarization of the electrons at the Fermi level
remains practically perfect for . The gapped magnon population
has a decisive influence on the magnetoresistance and the anomalous Hall effect
(AHE): i) The magnetoresistance changes its sign at , ii) the
anomalous Hall coefficient is strongly temperature dependent at and compatible with Berry phase related and/or side-jump electronic
deflection, whereas it is practically temperature-independent at lower
temperatures
Upper critical field and de Haas-van Alphen oscillations in KOsO measured in a hybrid magnet
Magnetic torque measurements have been performed on a KOsO single
crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The
upper critical field is determined to be 30 T. De Haas-van Alphen
oscillations are observed. A large mass enhancement of (1+) = = 7.6 is found. It is suggested that, for the large upper critical
field to be reconciled with Pauli paramagnetic limiting, the observed mass
enhancement must be of electron-phonon origin for the most part.Comment: 4 pages, 4 figures, published versio
de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB_2
Understanding the superconducting properties of MgB_2 is based strongly on
knowledge of its electronic structure. In this paper we review experimental
measurements of the Fermi surface parameters of pure and Al-doped MgB_2 using
the de Haas-van Alphen (dHvA) effect. In general, the measurements are in
excellent agreement with the theoretical predictions of the electronic
structure, including the strength of the electron-phonon coupling on each Fermi
surface sheet. For the Al doped samples, we are able to measure how the band
structure changes with doping and again these are in excellent agreement with
calculations based on the virtual crystal approximation. We also review work on
the dHvA effect in the superconducting state.Comment: Contribution to the special issue of Physica C "Superconductivity in
MgB2: Physics and Applications" (10 Pages with figures
Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression
The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo
Up-regulated expression of LAMP2 and autophagy activity during neuroendocrine differentiation of prostate cancer LNCaP cells
Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer
Anisotropy in spatial order-disorder transformations and the vortex lattice symmetry transition in and
Explorations of the order-disorder transformation in vortex matter in single
crystals of tetragonal structured (c/a 3) borocarbide superconductors,
and , reveal that vortex arrays experience different
effective pinning in different crystallographic directions. We surmise that
correlation exists between the large anisotropy in effective pinning/disorder
and the differences in the (local) symmetry transition from rhombohedral to
(quasi) square vortex lattice(VL). For field along high symmetry directions,
like, c-axis and ab-basal plane, the VL symmetry is close to square and the
ordered state spans a large field interval. When the field is turned away from
the c-axis towards ab-plane, at intermediate angles, the region of ordered
state shrinks, in response to enhancement in effective pinning. At such
intermediate angles the symmetry of the VL would be far from ideal triangular
or square.Comment: 6 pages, 5 figures (Accepted in Euro Phys. Letts.
Case-fatality rate of major bleeding events in patients on dual antiplatelet therapy after percutaneous coronary intervention: A systematic review and meta-analysis.
Background
Assessment of the case-fatality rate (CFR) of major bleeding on dual antiplatelet therapy (DAPT) may improve balancing risks and benefits of different durations of DAPT following percutaneous coronary intervention (PCI).
Objectives
To determine the CFR of major bleeding in patients on DAPT after PCI and to compare rates among different durations of DAPT.
Methods
Medline, Embase, and CENTRAL were searched from inception to August 2021 for randomized trials that reported fatal bleeding among patients who were randomized to ≥1 month of DAPT following PCI. Summary estimates for CFRs of major bleeding were calculated using the random-effects inverse-variance method. Statistical heterogeneity was evaluated using the I 2 statistic.
Results
Of 2777 citations obtained by the search, 15 (48%) of 31 potentially eligible studies were excluded because fatal bleeding was not reported, leaving 16 studies that were included in the analysis. Overall, there were 823 major bleeding events including 91 fatal events in 48,884 patients who were assigned to receive DAPT during study follow-up. The CFR of major bleeding was 10.8% (95% confidence interval [CI], 7.1-16.2; I 2 = 50%) in the entire study population, and 13.8% (95% CI, 6.5-27.1; I 2 = 28%), 11.2% (95% CI, 6.7-18.0; I 2 = 0%), and 5.8% (95% CI, 3.0-11.1; I 2 = 0%) in those on short-term (≤6 months; n = 16,553), standard-term (12 months; n = 19,453), and long-term DAPT (>12 months; n = 10,238), respectively.
Conclusion
Fatal bleeding is not reported in many studies evaluating DAPT after PCI. The CFR of major bleeding on DAPT is substantial and may be higher in the first 12 months of DAPT than during long-term DAPT
Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila Neurogenesis
Precise temporal coordination of gene expression is crucial for many developmental processes. One central question in developmental biology is how such coordinated expression patterns are robustly controlled. During embryonic development of the Drosophila central nervous system, neural stem cells called neuroblasts express a group of genes in a definite order, which leads to the diversity of cell types. We produced all possible regulatory networks of these genes and examined their expression dynamics numerically. From the analysis, we identified requisite regulations and predicted an unknown factor to reproduce known expression profiles caused by loss-of-function or overexpression of the genes in vivo, as well as in the wild type. Following this, we evaluated the stability of the actual Drosophila network for sequential expression. This network shows the highest robustness against parameter variations and gene expression fluctuations among the possible networks that reproduce the expression profiles. We propose a regulatory module composed of three types of regulations that is responsible for precise sequential expression. This study suggests that the Drosophila network for sequential expression has evolved to generate the robust temporal expression for neuronal specification
Correlation of three immunohistochemically detected markers of neuroendocrine differentiation with clinical predictors of disease progression in prostate cancer
<p>Abstract</p> <p>Background</p> <p>The importance of immuno-histological detection of neuroendocrine differentiation in prostatic adenocarcinoma with respect to disease at presentation and Gleason grade is gaining acceptance. There is limited literature on the relative significance of three commonly used markers of NE differentiation i.e. Chromogranin A (CgA), Neuron specific enolase (NSE) and Synaptophysin (Syn). In the current work we have assessed the correlation of immuno-histological detection of neuroendocrine differentiation in prostatic adenocarcinoma with respect to disease at presentation and Gleason grade and to determine the relative value of various markers.</p> <p>Materials and methods</p> <p>Consecutive samples of malignant prostatic specimens (Transurethral resection of prostate or radical retropubic prostatectomy) from 84 patients between January 1991 and December 1998 were evaluated by immunohistochemical staining (PAP technique) using selected neuroendocrine tumor markers i.e. Chromogranin A (CgA), Neuron specific enolase (NSE), and Synaptophysin (Syn). According to the stage at diagnosis, patients were divided into three groups. Group (i) included patients who had organ confined disease, group (ii) included patients with locally invasive disease, and group (iii) with distant metastasis. NE expression was correlated with Gleason sum and clinical stage at presentation and analyzed using Chi-Square test and one way ANNOVA.</p> <p>Results</p> <p>The mean age of the patients was 70 ± 9.2 years. Group I had 14 patients, group II had 31 patients and group III had 39 patients. CgA was detected in 33 cases, Syn in 8 cases, and NSE in 44 cases. Expression of CgA was seen in 7% of group I, 37% in group II and 35% of group III patients (p 0.059). CgA (p 0.024) and NSE (p 0.006) had a significantly higher expression with worsening Gleason grade.</p> <p>Conclusion</p> <p>CgA has a better correlation with disease at presentation than other markers used. Both NSE and CgA had increasing expression with worsening histological grade this correlation has a potential for use as a prognostic indicator. Limitations in the current work included small number and retrospective nature of work. The findings of this work needs validation in a larger cohort.</p
- …
