174 research outputs found
Are You Tampering With My Data?
We propose a novel approach towards adversarial attacks on neural networks
(NN), focusing on tampering the data used for training instead of generating
attacks on trained models. Our network-agnostic method creates a backdoor
during training which can be exploited at test time to force a neural network
to exhibit abnormal behaviour. We demonstrate on two widely used datasets
(CIFAR-10 and SVHN) that a universal modification of just one pixel per image
for all the images of a class in the training set is enough to corrupt the
training procedure of several state-of-the-art deep neural networks causing the
networks to misclassify any images to which the modification is applied. Our
aim is to bring to the attention of the machine learning community, the
possibility that even learning-based methods that are personally trained on
public datasets can be subject to attacks by a skillful adversary.Comment: 18 page
How Haptic Size Sensations Improve Distance Perception
Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual “posterior sampling”. In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information.National Institutes of Health (U.S.) (NIH grant R01EY015261)University of Minnesota (UMN Graduate School Fellowship)National Science Foundation (U.S.) (Graduate Research Fellowship)University of Minnesota (UMN Doctoral Dissertation Fellowship)National Institutes of Health (U.S.) (NIH NRSA grant F32EY019228-02)Ruth L. Kirschstein National Research Service Awar
School Effects on the Wellbeing of Children and Adolescents
Well-being is a multidimensional construct, with psychological, physical and social components. As theoretical basis to help understand this concept and how it relates to school, we propose the Self-Determination Theory, which contends that self-determined motivation and personality integration, growth and well-being are dependent on a healthy balance of three innate psychological needs of autonomy, relatedness and competence. Thus, current indicators involve school effects on children’s well-being, in many diverse modalities which have been explored. Some are described in this chapter, mainly: the importance of peer relationships; the benefits of friendship; the effects of schools in conjunction with some forms of family influence; the school climate in terms of safety and physical ecology; the relevance of the teacher input; the school goal structure and the implementation of cooperative learning. All these parameters have an influence in promoting optimal functioning among children and increasing their well-being by meeting the above mentioned needs. The empirical support for the importance of schools indicates significant small effects, which often translate into important real-life effects as it is admitted at present. The conclusion is that schools do make a difference in children’s peer relationships and well-being
Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares
Acceptance of public spaces is often guided by perceptual schemata. Such schemata also seem to play a role in thermal comfort and microclimate experience. For climate-responsive design with a focus on thermal comfort it is important to acquire knowledge about these schemata. For this purpose, perceived and “real” microclimate situations were compared for three Dutch urban squares. People were asked about their long-term microclimate perceptions, which resulted in “cognitive microclimate maps”. These were compared with mapped microclimate data from measurements representing the common microclimate when people stay outdoors. The comparison revealed some unexpected low matches; people clearly overestimated the influence of the wind. Therefore, a second assumption was developed: that it is the more salient wind situations that become engrained in people’s memory. A comparison using measurement data from windy days shows better matches. This suggests that these more salient situations play a role in the microclimate schemata that people develop about urban places. The consequences from this study for urban design are twofold. Firstly, urban design should address not only the “real” problems, but, more prominently, the “perceived” problems. Secondly, microclimate simulations addressing thermal comfort issues in urban spaces should focus on these perceived, salient situations
Perceptual Differences of Selected Football Players, Dancers, and Nonperformers to a Given Stimulus
- …
