19 research outputs found

    Preliminary Results Concerning Investigation of Air Pollution Effect in Western Macedonia on Fasting Blood Glucose During Pregnancy

    Get PDF
    Pregnancy is very crucial period in a woman’s life. Several changes occur in her body in order to supply the best to the fetus. During pregnancy glucose metabolism undergoes specific adaptations, including increased hepatic glucose production in the fasting state and maternal peripheral insulin resistance, so that glucose is always supplied to the fetus. PM pollution has recently been suggested as an emerging risk factor for glucose control disorders including impaired glucose regulation, or even diabetes. The aim of the present study was to investigate changes in fasting glucose in pregnant women, associated with changes in exposure to ambient air pollution. 50 pregnant women residents of Kozani, Western Macedonia, Greece participated in the study. The results of the study showed increased levels of fasting blood glucose in most women. Moreover, according to simple linear correlation (Pearson’s test), PM2.5 levels were associated with increased fasting blood glucose. The statistically significant correlation between atmospheric pollution and glucose levels found in the present preliminary study shows a possible role of pollution as a risk factor for second semester glucemia during pregnancy. Therefore future work is considered necessary in order to clarify this possible connection

    Effect of cadmium on cytosine hydroxymethylation in gastropod hepatopancreas

    Get PDF
    5-Hydroxymethylcytosine (5hmC) is an important, yet poorly understood epigenetic DNA modification, especially in invertebrates. Aberrant genome-wide 5hmC levels have been associated with cadmium (Cd) exposure in humans, but such information is lacking for invertebrate bioindicators. Here, we aimed to determine whether this epigenetic mark is present in DNA of the hepatopancreas of the land snail Cantareus aspersus and is responsive to Cd exposure. Adult snails were reared under laboratory conditions and exposed to graded amounts of dietary cadmium for 14 days. Weight gain was used as a sublethal endpoint, whereas survival as a lethal endpoint. Our results are the first to provide evidence for the presence of 5hmC in DNA of terrestrial mollusks; 5hmC levels are generally low with the measured values falling below 0.03%. This is also the first study to investigate the interplay of Cd with DNA hydroxymethylation levels in a non-human animal study system. Cadmium retention in the hepatopancreas of C. aspersus increased from a dietary Cd dose of 1 milligram per kilogram dry weight (mg/kg d. wt). For the same treatment, we identified the only significant elevation in percentage of samples with detectable 5hmC levels despite the lack of significant mortalities and changes in weight gain among treatment groups. These findings indicate that 5hmC is an epigenetic mark that may be responsive to Cd exposure, thereby opening a new aspect to invertebrate environmental epigenetics

    The Organophosphate Chlorpyrifos Interferes with the Responses to 17β-Estradiol in the Digestive Gland of the Marine Mussel Mytilus galloprovincialis

    Get PDF
    BACKGROUND: Many pesticides have been shown to act as endocrine disrupters. Although the potencies of currently used pesticides as hormone agonists/antagonists are low compared with those of natural ligands, their ability to act via multiple mechanisms might enhance the biological effect. The organophosphate Chlorpyrifos (CHP) has been shown to be weakly estrogenic and cause adverse neurodevelopmental effects in mammals. However, no information is available on the endocrine effects of CHP in aquatic organisms. In the digestive gland of the bivalve Mytilus galloprovincialis, a target tissue of both estrogens and pesticides, the possible effects of CHP on the responses to the natural estrogen 17β-estradiol (E(2)) were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Mussels were exposed to CHP (4.5 mg/l, 72 hrs) and subsequently injected with E(2) (6.75 ng/g dw). Responses were evaluated in CHP, E(2) and CHP/E(2) treatment groups at 24 h p.i. by a biomarker/transcriptomic approach. CHP and E(2) induced additive, synergistic, and antagonistic effects on lysosomal biomarkers (lysosomal membrane stability, lysosome/cytoplasm volume ratio, lipofuscin and neutral lipid accumulation). Additive and synergistic effects were also observed on the expression of estrogen-responsive genes (GSTπ, catalase, 5-HTR) evaluated by RT-Q-PCR. The use of a 1.7K cDNA Mytilus microarray showed that CHP, E(2) and CHP/E(2), induced 81, 44, and 65 Differentially Expressed Genes (DEGs), respectively. 24 genes were exclusively shared between CHP and CHP/E(2), only 2 genes between E(2) and CHP/E(2). Moreover, 36 genes were uniquely modulated by CHP/E(2). Gene ontology annotation was used to elucidate the putative mechanisms involved in the responses elicited by different treatments. CONCLUSIONS: The results show complex interactions between CHP and E(2) in the digestive gland, indicating that the combination of certain pesticides and hormones may give rise to unexpected effects at the molecular/cellular level. Overall, these data demonstrate that CHP can interfere with the mussel responses to natural estrogens

    Effects of organic pollutants on Eobania vermiculata measured with five biomarkers

    Full text link
    corecore