13 research outputs found
Data and Services at the Integrated Climate Data Center (ICDC) at the University of Hamburg
KlimawandelEarth observation data obtained from remote sensing sensors and in-situ data archives are fundamental for our current understanding of the Earth’s climate system. Such data are an important pre-requisite for Earth System research and should be easy to access and easy to use. In addition such data should be quality assessed and attached with information about uncertainties and long-term stability. If these data sets are stored in a self-explanatory, easy-to-use format, their usefulness and scientific value increase. This is the guideline for the Integrated Climate Data Center (ICDC) at the Center for Earth System Research and Sustainability (CEN), University of Hamburg. ICDC offers a reliable, quick and easy data access along with expert support for users and data providers. The ICDC provides several types of worldwide accessible in situ and satellite Earth observation data of the atmosphere, ocean, land surface, and cryosphere via the web portal http://icdc.zmaw.de. Recently, data from socio-economic sciences have been integrated into ICDC’s data base to enhance interdisciplinary collaboration. On ICDC’s web portal, each data set has its own page. It contains the data access points, a short data description, information about spatiotemporal coverage and resolution, data quality, important reference documents and contacts, and about how to cite the data set. The data are converted into netCDF or ASCII format. Consistency and quality checks are carried out – often in the framework of international collaborations. Literature studies are conducted to learn about potential limitations or preferred application areas of the data offered. The data sets can be accessed through the web page via FTP, HTTP or OPeNDAP. Using the Live Access Server, users can visualize data as maps, along transects and profiles, zoom into key regions, and create time series. In both fields, visualization and data access, ICDC tries to provide fast response times and high reliability
Decreasing intensity of open-ocean convection in the Greenland and Iceland seas
The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
Spatial distribution of air-sea heat fluxes over the sub-polar North Atlantic Ocean
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L18806, doi:10.1029/2012GL053097.On a variety of spatial and temporal scales, the energy transferred by air-sea heat and moisture fluxes plays an important role in both atmospheric and oceanic circulations. This is particularly true in the sub-polar North Atlantic Ocean, where these fluxes drive water-mass transformations that are an integral component of the Atlantic Meridional Overturning Circulation (AMOC). Here we use the ECMWF Interim Reanalysis to provide a high-resolution view of the spatial structure of the air-sea turbulent heat fluxes over the sub-polar North Atlantic Ocean. As has been previously recognized, the Labrador and Greenland Seas are areas where these fluxes are large during the winter months. Our particular focus is on the Iceland Sea region where, despite the fact that water-mass transformation occurs, the winter-time air-sea heat fluxes are smaller than anywhere else in the sub-polar domain. We attribute this minimum to a saddle point in the sea-level pressure field, that results in a reduction in mean surface wind speed, as well as colder sea surface temperatures associated with the regional ocean circulation. The magnitude of the heat fluxes in this region are modulated by the relative strength of the Icelandic and Lofoten Lows, and this leads to periods of ocean cooling and even ocean warming when, intriguingly, the sensible and latent heat fluxes are of opposite sign. This suggests that the air-sea forcing in this area has large-scale impacts for climate, and that even modest shifts in the atmospheric circulation could potentially impact the AMOC.GWKM was supported by the Natural Science and Engineering
Research Council of Canada. IAR was funded in part by NCAS (the National
Centre for Atmospheric Sciences) and by NERC grant NE/I005293/1. RSP
was funded by grant OCE-0959381 fromthe US National Science Foundation.2013-03-2
Time-dependent propagators for stochastic models of gene expression: an analytical method
The inherent stochasticity of gene expression in the context of regulatory networks profoundly influences the dynamics of the involved species. Mathematically speaking, the propagators which describe the evolution of such networks in time are typically defined as solutions of the corresponding chemical master equation (CME). However, it is not possible in general to obtain exact solutions to the CME in closed form, which is due largely to its high dimensionality. In the present article, we propose an analytical method for the efficient approximation of these propagators. We illustrate our method on the basis of two categories of stochastic models for gene expression that have been discussed in the literature. The requisite procedure consists of three steps: a probability-generating function is introduced which transforms the CME into (a system of) partial differential equations (PDEs); application of the method of characteristics then yields (a system of) ordinary differential equations (ODEs) which can be solved using dynamical systems techniques, giving closed-form expressions for the generating function; finally, propagator probabilities can be reconstructed numerically from these expressions via the Cauchy integral formula. The resulting ‘library’ of propagators lends itself naturally to implementation in a Bayesian parameter inference scheme, and can be generalised systematically to related categories of stochastic models beyond the ones considered here
The Iceland-Lofotes pressure difference: different states of the North Atlantic low-pressure zone
The extended North Atlantic low-pressure zone exhibits two pressure minima in the long-term winter mean: the primary one west of Iceland and the secondary one near Norwegian Lofotes Islands. Based on the ERA-40 data set and on wintertime monthly sea level pressure (SLP) anomalies at both places, the states of co- and antivariability are investigated. The covariability represents states of a strongly or weakly developed North Atlantic low-pressure zone. The difference between these two states represents the NAO pattern. The antivariability is defined by an Iceland-Lofotes difference (ILD) index, which is positive (negative) when the anomaly in the Lofotes area is higher (lower) than that in the Iceland area. An ILD pattern is calculated as difference between SLP composites for high and low ILD indices. The ILD pattern extends horizontally beyond the two centers and affects other prominent Northern Hemisphere pressure centres: Aleutian low; Siberian high and Azores high. The pattern extends into the stratosphere and shows significant impacts on surface air temperature, Arctic sea ice concentration and sea ice motion
The drift buoys experiment FRAMZY 2008 : Ice drift in Fram Strait and relation to atmospheric forcing
The KLIWAS North Sea climatology. Part I: Processing of the atmospheric data
Climatological reference data serve as validation of regional climate models, as the boundary condition for the model runs, and as input for assimilation systems used by reanalyses. Within the framework of the interdisciplinary research program Climate Water Navigation (KLIWAS): Impacts of Climate Change on Waterways and Navigation of the German Federal Ministry of Transport and Digital Infrastructure, a new climatology of the North Sea and adjacent regions was developed in an joint effort by the Federal Maritime and Hydrographic Agency, the German Weather Service [Deutscher Wetterdienst (DWD)], and the Integrated Climate Data Center (ICDC) of the University of Hamburg. Long-term records of monthly and annual mean 2-m air temperature, dewpoint temperature, and sea level pressure data from 1950 to 2010 were calculated on a horizontal 1° × 1° grid. All products were based on quality-controlled data from DWD’s Marine Data Centre. Correction methods were implemented for each parameter to reduce the sampling error resulting from the sparse coverage of observations in certain regions. Comparisons between sampling error estimates based on ERA-40 and the climatology products show that the sampling error was reduced effectively. The climatologies are available for download on the ICDC’s website and will be updated regularly regarding new observations and additional parameters. An extension to the Baltic Sea is in progress
The KLIWAS North Sea Climatology. Part II: Assessment against Global Reanalyses
Observational reference datasets are needed in atmosphere and ocean for quality assessments of climate models and for the evaluation of atmospheric reanalyses. To meet this demand on the regional scale, the Climate Water Navigation (KLIWAS) North Sea climatology (KNSC) was developed. This paper uses KNSC to assess the quality of five atmospheric reanalysis products [ERA-40; ERA-Interim; NCEP-1; 20CR, version 2 (20CRv2); and MERRA] over the North Sea from 1979 to 2001. Differences in sea level pressure (2-m air temperature) can be found in coastal regions for ERA-40/ERA-Interim and MERRA, and are more pronounced during positive (negative) phases of the NAO. 20CRv2 shows biases over the entire North Sea and all seasons of several hectopascals. ERA-40 and ERA-Interim show a negative 2-m air temperature bias relative to KNSC along the coastal mainland of Europe, especially during winter months, possibly a result of a remaining land influence. Mean differences result from winter and fall, mostly remaining within measurement uncertainties. Despite the upgrades in the model setup, ERA-Interim shows negligible differences from ERA-40. 20CRv2 and MERRA show positive (negative) biases during the summer (winter) half year. NCEP-1 follows ERA-40/ERA-Interim but mostly with slightly higher differences. All five reanalyses reproduce the decadal variability and climate shift signals present in KNSC fields. Overall, only 20CRv2 has to be considered as clearly unsatisfactorily regarding biases, MAE, and RMSE compared to all other datasets investigated. This study suggests that similar intercomparison studies, performed over other parts of the world’s oceans, especially coastal regions, can be very helpful in identifying shortcomings in atmospheric reanalysis products
The Baltic and North Seas Climatology (BNSC) - A comprehensive, observation-based data product of atmospheric and hydrographic parameters
The Baltic and North Seas Climatology (BNSC) presented here is a new climatology calculated solely from marine in situ observations. Created in cooperation between University of Hamburg (UHH), Federal Maritime and Hydrographic Agency [Bundesamt fur Seeschifffahrt und Hydrographie (BSH)] and German Meteorological Service [Deutscher Wetterdienst (DWD)], the BNSC is an update of the KLIWAS ("Klimawandel und WasserstraBen") climatology for the North Sea and is extended to the Baltic Sea. A thorough quality control, the reduction of the temporal sampling error and spatial and temporal averaging were applied to the observations, yielding time series of gridded fields of atmospheric and hydrographic parameters in the region of the Baltic, the North Sea and adjacent regions of the North Atlantic. The atmospheric subset of the BNSC consists of time series of monthly mean gridded fields of 2 m air and dew point temperature and air pressure at sea level for the period 1950-2015 on a horizontal 1 degrees x 1 degrees grid. Climatological fields are provided as well. The hydrographic part of the BNSC comprises the variables water temperature and salinity on 105 depth levels for the time interval 1873-2015. The grid boxes' edge length is 0.25 degrees in both zonal and meridional direction. Monthly and annual mean fields are provided as well as decadal monthly mean fields. To create homogenous fields, the method of objective analysis was applied to the fields of decadal means. Furthermore, an extensive sensitivity study was carried out to assess the sensitivity of the data product to the amount of observational data. The BNSC introduced here is compared to several different data products: three reanalyses (ERA-Interim, ERA40 and COSMO-REA6), the corresponding KUWAS product and meteorological station data for the atmospheric part. The hydrographic subset is compared to the KLIWAS climatology, the BALTIC ATLAS and the Baltic Sea Physical Reanalysis Product. The BNSC data product allows studying of climate variability but also holds the chance to validate regional numerical climate simulations, which makes it a valuable reference data set. The BSNC is freely available via the website of University of Hamburg's Integrated Climate Data Center
