371 research outputs found
Self-adjoint symmetry operators connected with the magnetic Heisenberg ring
We consider symmetry operators a from the group ring C[S_N] which act on the
Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites. We
investigate such symmetry operators a which are self-adjoint (in a sence
defined in the paper) and which yield consequently observables of the
Heisenberg model. We prove the following results: (i) One can construct a
self-adjoint idempotent symmetry operator from every irreducible character of
every subgroup of S_N. This leads to a big manifold of observables. In
particular every commutation symmetry yields such an idempotent. (ii) The set
of all generating idempotents of a minimal right ideal R of C[S_N] contains one
and only one idempotent which ist self-adjoint. (iii) Every self-adjoint
idempotent e can be decomposed into primitive idempotents e = f_1 + ... + f_k
which are also self-adjoint and pairwise orthogonal. We give a computer
algorithm for the calculation of such decompositions. Furthermore we present 3
additional algorithms which are helpful for the calculation of self-adjoint
operators by means of discrete Fourier transforms of S_N. In our investigations
we use computer calculations by means of our Mathematica packages PERMS and
HRing.Comment: 13 page
An alternative approach to the construction of Schur-Weyl transform
We propose an alternative approach for the construction of the unitary matrix
which performs generalized unitary rotations of the system consisting of
independent identical subsystems (for example spin system). This matrix, when
applied to the system, results in a change of degrees of freedom, uncovering
the information hidden in non-local degrees of freedom. This information can be
used, inter alia, to study the structure of entangled states, their
classification and may be useful for construction of quantum algorithms.Comment: 6 page
Harvesting, coupling and control of single exciton coherences in photonic waveguide antennas
We perform coherent non-linear spectroscopy of individual excitons strongly
confined in single InAs quantum dots (QDs). The retrieval of their
intrinsically weak four-wave mixing (FWM) response is enabled by a
one-dimensional dielectric waveguide antenna. Compared to a similar QD embedded
in bulk media, the FWM detection sensitivity is enhanced by up to four orders
of magnitude, over a broad operation bandwidth. Three-beam FWM is employed to
investigate coherence and population dynamics within individual QD transitions.
We retrieve their homogenous dephasing in a presence of spectral wandering.
Two-dimensional FWM reveals off-resonant F\"orster coupling between a pair of
distinct QDs embedded in the antenna. We also detect a higher order QD
non-linearity (six-wave mixing) and use it to coherently control the FWM
transient. Waveguide antennas enable to conceive multi-color coherent
manipulation schemes of individual emitters.Comment: 7 pages, 8 Figure
On local linearization of control systems
We consider the problem of topological linearization of smooth (C infinity or
real analytic) control systems, i.e. of their local equivalence to a linear
controllable system via point-wise transformations on the state and the control
(static feedback transformations) that are topological but not necessarily
differentiable. We prove that local topological linearization implies local
smooth linearization, at generic points. At arbitrary points, it implies local
conjugation to a linear system via a homeomorphism that induces a smooth
diffeomorphism on the state variables, and, except at "strongly" singular
points, this homeomorphism can be chosen to be a smooth mapping (the inverse
map needs not be smooth). Deciding whether the same is true at "strongly"
singular points is tantamount to solve an intriguing open question in
differential topology
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
Antireflective photonic structure for coherent nonlinear spectroscopy of single magnetic quantum dots
This work presents epitaxial growth and optical spectroscopy of CdTe quantum
dots (QDs) in (Cd,Zn,Mg)Te barriers placed on the top of (Cd,Zn,Mg)Te
distributed Bragg reflector. The formed photonic mode in our half-cavity
structure permits to enhance the local excitation intensity and extraction
efficiency of the QD photoluminescence, while suppressing the reflectance
within the spectral range covering the QD transitions. This allows to perform
coherent, nonlinear, resonant spectroscopy of individual QDs. The coherence
dynamics of a charged exciton is measured via four-wave mixing, with the
estimated dephasing time ps. The same structure contains
QDs doped with single Mn ions, as detected in photoluminescence spectra.
Our work therefore paves the way toward investigating and controlling an
exciton coherence coupled, via ,- exchange interaction, with an
individual spin of a magnetic dopant.Comment: 6 pages, 5 figure
Proximity of Iron Pnictide Superconductors to a Quantum Tricritical Point
We determine the nature of the magnetic quantum critical point in the doped
LaFeAsO using a set of constrained density functional calculations that provide
ab initio coefficients for a Landau order parameter analysis. The system turns
out to be remarkably close to a quantum tricritical point, where the nature of
the phase transition changes from first to second order. We compare with the
effective field theory and discuss the experimental consequences.Comment: 4 pages, 4 figure
Geometric reduction in optimal control theory with symmetries
A general study of symmetries in optimal control theory is given, starting
from the presymplectic description of this kind of system. Then, Noether's
theorem, as well as the corresponding reduction procedure (based on the
application of the Marsden-Weinstein theorem adapted to the presymplectic case)
are stated both in the regular and singular cases, which are previously
described.Comment: 24 pages. LaTeX file. The paper has been reorganized. Additional
comments have been included in Section 3. The example in Section 5.2 has been
revisited. Some references have been adde
Interfacial morphology and correlations in adsorption at a chemically structured substrate - exact results in d=2
Adsorption at a 1-dimensional planar substrate equipped with a localized
chemical inhomogeneity is studied within the framework of a continuum
interfacial model from the point of view of interfacial morphology and
correlation function properties. Exact expressions for the one-point and
two-point probability distribution functions and
, being the
interface position above a fixed point of the substrate, are derived
for temperature corresponding to the inhomogeneity's wetting transition. It is
demonstrated that in the limit of macroscopic inhomogeneity's size the net
effect of the remaining homogeneous parts of the substrate on the interfacial
morphology above the inhomogeneity is exactly equivalent to appropriate pinning
of the interface at its boundaries. The structure of the average interfacial
morphology and correlation function in this limit are discussed and compared to
earlier results obtained for systems with homogeneous substrate
- …
