695 research outputs found
Exact Results for the Asymmetric Simple Exclusion Process with a Blockage
We present new results for the current as a function of transmission rate in
the one dimensional totally asymmetric simple exclusion process (TASEP) with a
blockage that lowers the jump rate at one site from one to r < 1. Exact finite
volume results serve to bound the allowed values for the current in the
infinite system. This proves the existence of a gap in allowed density
corresponding to a nonequilibrium ``phase transition'' in the infinite system.
A series expansion in r, derived from the finite systems, is proven to be
asymptotic for all sufficiently large systems. Pade approximants based on this
series, which make specific assumptions about the nature of the singularity at
r = 1, match numerical data for the ``infinite'' system to a part in 10^4.Comment: 18 pages, LaTeX (including figures in LaTeX picture mode
When is a bottleneck a bottleneck?
Bottlenecks, i.e. local reductions of capacity, are one of the most relevant
scenarios of traffic systems. The asymmetric simple exclusion process (ASEP)
with a defect is a minimal model for such a bottleneck scenario. One crucial
question is "What is the critical strength of the defect that is required to
create global effects, i.e. traffic jams localized at the defect position".
Intuitively one would expect that already an arbitrarily small bottleneck
strength leads to global effects in the system, e.g. a reduction of the maximal
current. Therefore it came as a surprise when, based on computer simulations,
it was claimed that the reaction of the system depends in non-continuous way on
the defect strength and weak defects do not have a global influence on the
system. Here we reconcile intuition and simulations by showing that indeed the
critical defect strength is zero. We discuss the implications for the analysis
of empirical and numerical data.Comment: 8 pages, to appear in the proceedings of Traffic and Granular Flow
'1
Spatial Organization in the Reaction A + B --> inert for Particles with a Drift
We describe the spatial structure of particles in the (one dimensional)
two-species annihilation reaction A + B --> 0, where both species have a
uniform drift in the same direction and like species have a hard core
exclusion. For the case of equal initial concentration, at long times, there
are three relevant length scales: the typical distance between similar
(neighboring) particles, the typical distance between dissimilar (neighboring)
particles, and the typical size of a cluster of one type of particles. These
length scales are found to be generically different than that found for
particles without a drift.Comment: 10 pp of gzipped uuencoded postscrip
Localized defects in a cellular automaton model for traffic flow with phase separation
We study the impact of a localized defect in a cellular automaton model for
traffic flow which exhibits metastable states and phase separation. The defect
is implemented by locally limiting the maximal possible flow through an
increase of the deceleration probability. Depending on the magnitude of the
defect three phases can be identified in the system. One of these phases shows
the characteristics of stop-and-go traffic which can not be found in the model
without lattice defect. Thus our results provide evidence that even in a model
with strong phase separation stop-and-go traffic can occur if local defects
exist. From a physical point of view the model describes the competition
between two mechanisms of phase separation.Comment: 14 pages, 7 figure
Exact solutions for a mean-field Abelian sandpile
We introduce a model for a sandpile, with N sites, critical height N and each
site connected to every other site. It is thus a mean-field model in the
spin-glass sense. We find an exact solution for the steady state probability
distribution of avalanche sizes, and discuss its asymptotics for large N.Comment: 10 pages, LaTe
Partially asymmetric exclusion models with quenched disorder
We consider the one-dimensional partially asymmetric exclusion process with
random hopping rates, in which a fraction of particles (or sites) have a
preferential jumping direction against the global drift. In this case the
accumulated distance traveled by the particles, x, scales with the time, t, as
x ~ t^{1/z}, with a dynamical exponent z > 0. Using extreme value statistics
and an asymptotically exact strong disorder renormalization group method we
analytically calculate, z_{pt}, for particlewise (pt) disorder, which is argued
to be related to the dynamical exponent for sitewise (st) disorder as
z_{st}=z_{pt}/2. In the symmetric situation with zero mean drift the particle
diffusion is ultra-slow, logarithmic in time.Comment: 4 pages, 3 figure
Two-Species Annihilation with Drift: A Model with Continuous Concentration-Decay Exponents
We propose a model for diffusion-limited annihilation of two species, or , where the motion of the particles is subject to a drift. For equal
initial concentrations of the two species, the density follows a power-law
decay for large times. However, the decay exponent varies continuously as a
function of the probability of which particle, the hopping one or the target,
survives in the reaction. These results suggest that diffusion-limited
reactions subject to drift do not fall into a limited number of universality
classes.Comment: 10 pages, tex, 3 figures, also available upon reques
Self Organization and a Dynamical Transition in Traffic Flow Models
A simple model that describes traffic flow in two dimensions is studied. A
sharp {\it jamming transition } is found that separates between the low density
dynamical phase in which all cars move at maximal speed and the high density
jammed phase in which they are all stuck. Self organization effects in both
phases are studied and discussed.Comment: 6 pages, 4 figure
Kinetics of A+B--->0 with Driven Diffusive Motion
We study the kinetics of two-species annihilation, A+B--->0, when all
particles undergo strictly biased motion in the same direction and with an
excluded volume repulsion between same species particles. It was recently shown
that the density in this system decays as t^{-1/3}, compared to t^{-1/4}
density decay in A+B--->0 with isotropic diffusion and either with or without
the hard-core repulsion. We suggest a relatively simple explanation for this
t^{-1/3} decay based on the Burgers equation. Related properties associated
with the asymptotic distribution of reactants can also be accounted for within
this Burgers equation description.Comment: 11 pages, plain Tex, 8 figures. Hardcopy of figures available on
request from S
Towards a model for protein production rates
In the process of translation, ribosomes read the genetic code on an mRNA and
assemble the corresponding polypeptide chain. The ribosomes perform discrete
directed motion which is well modeled by a totally asymmetric simple exclusion
process (TASEP) with open boundaries. Using Monte Carlo simulations and a
simple mean-field theory, we discuss the effect of one or two ``bottlenecks''
(i.e., slow codons) on the production rate of the final protein. Confirming and
extending previous work by Chou and Lakatos, we find that the location and
spacing of the slow codons can affect the production rate quite dramatically.
In particular, we observe a novel ``edge'' effect, i.e., an interaction of a
single slow codon with the system boundary. We focus in detail on ribosome
density profiles and provide a simple explanation for the length scale which
controls the range of these interactions.Comment: 8 pages, 8 figure
- …
