176 research outputs found
Перша міжнародна науково-практична конференція «Комп'ютерне моделювання в хімії та технологіях»
Heat capacity of -GaN: Isotope Effects
Until recently, the heat capacity of GaN had only been measured for
polycrystalline powder samples. Semiempirical as well as
\textit{first-principles} calculations have appeared within the past few years.
We present in this article measurements of the heat capacity of hexagonal
single crystals of GaN in the 20-1400K temperature range. We find that our data
deviate significantly from the literature values for polycrystalline materials.
The dependence of the heat capacity on the isotopic mass has also been
investigated recently for monatomic crystals such as diamond, silicon, and
germanium. Multi-atomic crystals are expected to exhibit a different dependence
of these heat capacities on the masses of each of the isotopes present. These
effects have not been investigated in the past. We also present
\textit{first-principles} calculations of the dependence of the heat capacities
of GaN, as a canonical binary material, on each of the Ga and N masses. We show
that they are indeed different, as expected from the fact that the Ga mass
affects mainly the acoustic, that of N the optic phonons. It is hoped that
these calculations will encourage experimental measurements of the dependence
of the heat capacity on isotopic masses in binary and more complex
semiconductors.Comment: 12 pages, 5 Figures, submitted to PR
Effects of internal molecular degrees of freedom on the thermal conductivity of some glasses and disordered crystals
The thermal conductivity κ(T) of the fully ordered stable phase II, the metastable phase III, the orientationally disordered (plastic) phase I, as well as the nonergodic orientational glass (OG) phase, of the glass former cyclohexanol (C 6H 11OH) has been measured under equilibrium vapor pressure within the 2-200 K temperature range. The main emphasis is here focused on the influence of the conformational disorder upon the thermal properties of this material. Comparison of results with those regarding cyanoclyclohexane (C 6H 11CN), a chemically related compound, serves to quantify the role played by the terminal groups -OH and -CN on the phonon scattering processes. The picture that emerges shows that motions of such groups do play a minor role as scattering centers, both within the low-temperature orientationally ordered phases as well as in the OG states. The results are analyzed within the Debye-Peierls relaxation time model for isotropic solids comprising mechanisms for long-wave phonon scattering within the OG and orientational ordered low-temperature phases, as well as others arising from localized short-wavelength vibrational modes as pictured by the Cahill-Pohl model. By means of complementary neutron and Raman scattering we show that in the OG state the energy landscapes for both compounds are very similar. © 2012 American Physical Society.This work was financially supported in part by the Spanish Ministry of Science and Innovation (Grant No. FIS2008-00837) and the Catalan Government (Grant No. 2009SGR-1251)Peer Reviewe
Glassy Anomalies in the Low-Temperature Thermal Properties of a Minimally Disordered Crystalline Solid
The low-temperature thermal and transport properties of an unusual kind of crystal exhibiting minimal molecular positional and tilting disorder have been measured. The material, namely, low-dimensional, highly anisotropic pentachloronitrobenzene has a layered structure of rhombohedral parallel planes in which the molecules execute large-amplitude in-plane as well as concurrent out-of-plane librational motions. Our study reveals that low-temperature glassy anomalies can be found in a system with minimal disorder due to the freezing of (mostly in-plane) reorientational jumps of molecules between equivalent crystallographic positions with partial site occupation. Our findings will pave the way to a deeper understanding of the origin of the above-mentioned universal glassy properties at low temperature.Peer ReviewedPostprint (published version
Eliashberg-type equations for correlated superconductors
The derivation of the Eliashberg -- type equations for a superconductor with
strong correlations and electron--phonon interaction has been presented. The
proper account of short range Coulomb interactions results in a strongly
anisotropic equations. Possible symmetries of the order parameter include s, p
and d wave. We found the carrier concentration dependence of the coupling
constants corresponding to these symmetries. At low hole doping the d-wave
component is the largest one.Comment: RevTeX, 18 pages, 5 ps figures added at the end of source file, to be
published in Phys.Rev. B, contact: [email protected]
Isotope Effect for the Penetration Depth in Superconductors
We show that various factors can lead to an isotopic dependence of the
penetration depth . Non-adiabaticity (Jahn-Teller crossing) leads to
the isotope effect of the charge carrier concentration and, consequently,
of in doped superconductors such as the cuprates. A general equation
relating the isotope coefficients of and of is presented for
London superconductors. We further show that the presence of magnetic
impurities or a proximity contact also lead to an isotopic dependence of
; the isotope coefficient turns out to be temperature dependent,
, in these cases. The existence of the isotope effect for the
penetration depth is predicted for conventional as well as for high-temperature
superconductors. Various experiments are proposed and/or discussed.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.
- …
