6,829 research outputs found
A nanoflare model of quiet Sun EUV emission
Nanoflares have been proposed as the main source of heating of the solar
corona. However, detecting them directly has so far proved elusive, and
extrapolating to them from the properties of larger brightenings gives
unreliable estimates of the power-law exponent characterising their
distribution. Here we take the approach of statistically modelling light curves
representative of the quiet Sun as seen in EUV radiation. The basic assumption
is that all quiet-Sun EUV emission is due to micro- and nanoflares, whose
radiative energies display a power-law distribution. Radiance values in the
quiet Sun follow a lognormal distribution. This is irrespective of whether the
distribution is made over a spatial scan or over a time series. We show that
these distributions can be reproduced by our simple model.Comment: 13 pages, 18 figures, accepted for publication by A&
Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere
We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line
and G-band image sequences and their relation to simultaneous and co-spatial
magnetic field measurements. We explore the G-band and H-line intensity
oscillation spectra both separately and comparatively via their relative phase
differences, time delays and cross-coherences. In the non-magnetic situations,
both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band
centered at 4.5 mHz, but this is suppressed as magnetic field increases. A
relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s
in non-magnetic situations implying a mean effective height difference of 140
km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the
measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A
second coherence maximum appears between 7.5 - 10 mHz. Investigation of the
locations of this doubled-frequency coherence locates it in diffuse rings
outside photospheric magnetic structures. Some possible interpretations of
these results are offered.Comment: 19 pages, 6 figure
The application of a Trous wave filtering and Monte Carlo analysis on SECIS 2001 solar eclipse observations
8000 images of the Solar corona were captured during the June 2001 total
Solar eclipse. New software for the alignment of the images and an automated
technique for detecting intensity oscillations using multi scale wavelet
analysis were developed. Large areas of the images covered by the Moon and the
upper corona were scanned for oscillations and the statistical properties of
the atmospheric effects were determined. The a Trous wavelet transform was used
for noise reduction and Monte Carlo analysis as a significance test of the
detections. The effectiveness of those techniques is discussed in detail.Comment: 17 pages, 8 figures, accepted by Solar Physics Journal for
publication in Topical Issue: "Frontiers in Solar Image Processing
Observation of multiple sausage oscillations in cool postflare loop
Using simultaneous high spatial (1.3 arc sec) and temporal (5 and 10 s)
resolution H-alpha observations from the 15 cm Solar Tower Telescope at ARIES,
we study the oscillations in the relative intensity to explore the possibility
of sausage oscillations in the chromospheric cool postflare loop. We use
standard wavelet tool, and find the oscillation period of ~ 587 s near the loop
apex, and ~ 349 s near the footpoint. We suggest that the oscillations
represent the fundamental and the first harmonics of fast sausage waves in the
cool postflare loop. Based on the period ratio P1/P2 ~ 1.68, we estimate the
density scale height in the loop as ~ 17 Mm. This value is much higher than the
equilibrium scale height corresponding to H-alpha temperature, which probably
indicates that the cool postflare loop is not in hydrostatic equilibrium.
Seismologically estimated Alfv\'en speed outside the loop is ~ 300-330 km/s.
The observation of multiple oscillations may play a crucial role in
understanding the dynamics of lower solar atmosphere, complementing such
oscillations already reported in the upper solar atmosphere (e.g., hot flaring
loops).Comment: 13 pages, 4 figures, accepted in MNRA
Space-Time Distribution of G-Band and Ca II H-Line Intensity Oscillations in Hinode/SOT-FG Observations
We study the space-time distributions of intensity fluctuations in 2 - 3 hour
sequences of multi-spectral, high-resolution, high-cadence broad-band
filtergram images (BFI) made by the SOT-FG system aboard the Hinode spacecraft.
In the frequency range 5.5 < f < 8.0 mHz both G-band and Ca II H-line
oscillations are suppressed in the presence of magnetic fields, but the
suppression disappears for f > 10 mHz. By looking at G-band frequencies above
10 mHz we find that the oscillatory power, both at these frequencies and at
lower frequencies too, lies in a mesh pattern with cell scale 2 - 3 Mm, clearly
larger than normal granulation, and with correlation times on the order of
hours. The mesh pattern lies in the dark lanes between stable cells found in
time-integrated G-band intensity images. It also underlies part of the bright
pattern in time-integrated H-line emission. This discovery may reflect
dynamical constraints on the sizes of rising granular convection cells together
with the turbulence created in strong intercellular downflows.Comment: 24 pages, 15 figure
Synchronization of chaotic oscillator time scales
This paper deals with the chaotic oscillator synchronization. A new approach
to detect the synchronized behaviour of chaotic oscillators has been proposed.
This approach is based on the analysis of different time scales in the time
series generated by the coupled chaotic oscillators. It has been shown that
complete synchronization, phase synchronization, lag synchronization and
generalized synchronization are the particular cases of the synchronized
behavior called as "time--scale synchronization". The quantitative measure of
chaotic oscillator synchronous behavior has been proposed. This approach has
been applied for the coupled Rossler systems.Comment: 29 pages, 11 figures, published in JETP. 100, 4 (2005) 784-79
Wavelet analysis of epileptic spikes
Interictal spikes and sharp waves in human EEG are characteristic signatures
of epilepsy. These potentials originate as a result of synchronous,
pathological discharge of many neurons. The reliable detection of such
potentials has been the long standing problem in EEG analysis, especially after
long-term monitoring became common in investigation of epileptic patients. The
traditional definition of a spike is based on its amplitude, duration,
sharpness, and emergence from its background. However, spike detection systems
built solely around this definition are not reliable due to the presence of
numerous transients and artifacts. We use wavelet transform to analyze the
properties of EEG manifestations of epilepsy. We demonstrate that the behavior
of wavelet transform of epileptic spikes across scales can constitute the
foundation of a relatively simple yet effective detection algorithm.Comment: 4 pages, 3 figure
Polyhomogeneity and zero-rest-mass fields with applications to Newman-Penrose constants
A discussion of polyhomogeneity (asymptotic expansions in terms of and
) for zero-rest-mass fields and gravity and its relation with the
Newman-Penrose (NP) constants is given. It is shown that for spin-
zero-rest-mass fields propagating on Minkowski spacetime, the logarithmic terms
in the asymptotic expansion appear naturally if the field does not obey the
``Peeling theorem''. The terms that give rise to the slower fall-off admit a
natural interpretation in terms of advanced field. The connection between such
fields and the NP constants is also discussed. The case when the background
spacetime is curved and polyhomogeneous (in general) is considered. The free
fields have to be polyhomogeneous, but the logarithmic terms due to the
connection appear at higher powers of . In the case of gravity, it is
shown that it is possible to define a new auxiliary field, regular at null
infinity, and containing some relevant information on the asymptotic behaviour
of the spacetime. This auxiliary zero-rest-mass field ``evaluated at future
infinity ()'' yields the logarithmic NP constants.Comment: 19 page
Photometric variability of the Herbig Ae star HD 37806
The more massive counterparts of T Tauri stars, Herbig Ae/Be stars, are known
to vary in a complex way with no variability mechanism clearly identified. We
attempt to characterize the optical variability of HD~37806 (MWC 120) on time
scales ranging between minutes and several years. A continuous, one-minute
resolution, 21 day-long sequence of MOST (Microvariability & Oscillations of
STars) satellite observations has been analyzed using wavelet, scalegram and
dispersion analysis tools. The MOST data have been augmented by sparse
observations over 9 seasons from ASAS (All Sky Automated Survey), by previously
non-analyzed ESO (European Southern Observatory) data partly covering 3 seasons
and by archival measurements dating back half a century ago. Mutually
superimposed flares or accretion instabilities grow in size from about 0.0003
of the mean flux on a time scale of minutes to a peak-to-peak range of <~0.05
on a time scale of a few years. The resulting variability has properties of
stochastic "red" noise, whose self-similar characteristics are very similar to
those observed in cataclysmic binary stars, but with much longer characteristic
time scales of hours to days (rather than minutes) and with amplitudes which
appear to cease growing in size on time scales of tens of years. In addition to
chaotic brightness variations combined with stochastic noise, the MOST data
show a weakly defined cyclic signal with a period of about 1.5 days, which may
correspond to the rotation of the star.Comment: Accepted for publication by Astron. & Astroph. 8 pages, 9 figures.
For some reason Fig.5 incorrectly shows in arXiv: Contours OK, gray scale no
- …
