84 research outputs found
Structural Characterization of the P1+ Intermediate State of the P-Cluster of Nitrogenase
Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. These results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states
Recommended from our members
Author Correction: Structural evidence for intermediates during O2 formation in photosystem II
Correction to: Naturehttps://doi.org/10.1038/s41586-023-06038-z Published online 3 May 2023 In the version of the article originally published, it was not clarified that the raw data used to obtain one of the refined structural models for the 2F state (PDB 8EZ5) were the same as those used to obtain the previously reported structural models PDB 6W1V and PDB 7RF8. This clarification has now been added as a footnote to Extended Data Table 1
The morphology, arrangement, and ultrastructure of a new type of microtrich sensilla in marine isopods (Crustacea, Isopoda)
- …
