272 research outputs found

    Dispersion and decay of collective modes in neutron star cores

    Full text link
    We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.Comment: 10 pages, 4 figure

    Turbulence in Binary Bose-Einstein Condensates Generated by Highly Non-Linear Rayleigh-Taylor and Kelvin-Helmholtz Instabilities

    Get PDF
    Quantum turbulence (QT) generated by the Rayleigh-Taylor instability in binary immiscible ultracold 87Rb atoms at zero temperature is studied theoretically. We show that the quantum vortex tangle is qualitatively different from previously considered superfluids, which reveals deep relations between QT and classical turbulence. The present QT may be generated at arbitrarily small Mach numbers, which is a unique property not found in previously studied superfluids. By numerical solution of the coupled Gross-Pitaevskii equations we find that the Kolmogorov scaling law holds for the incompressible kinetic energy. We demonstrate that the phenomenon may be observed in the laboratory.Comment: Revised version. 7 pages, 8 figure

    High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation

    Full text link
    We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noise modulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. Eye-diagram and signal-to-noise ratio (SNR) analysis show that this new broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR compared to a previous slow-modulation method

    Higher-order nonlinear modes and bifurcation phenomena due to degenerate parametric four-wave mixing

    Get PDF
    We demonstrate that weak parametric interaction of a fundamental beam with its third harmonic field in Kerr media gives rise to a rich variety of families of non-fundamental (multi-humped) solitary waves. Making a comprehensive comparison between bifurcation phenomena for these families in bulk media and planar waveguides, we discover two novel types of soliton bifurcations and other interesting findings. The later includes (i) multi-humped solitary waves without even or odd symmetry and (ii) multi-humped solitary waves with large separation between their humps which, however, may not be viewed as bound states of several distinct one-humped solitons.Comment: 9 pages, 17 figures, submitted to Phys. Rev.

    Parametric localized modes in quadratic nonlinear photonic structures

    Get PDF
    We analyze two-color spatially localized modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi-2) nonlinear interfaces embedded into a linear layered structure --- a quasi-one-dimensional quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi-2 equations), and find, numerically and analytically, the spatially localized solutions --- discrete gap solitons. For a single nonlinear interface in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities and differences with quadratic solitons in homogeneous media.Comment: 9 pages, 8 figure

    Analysis of Physical Readiness of First Course Students after Self-Isolation

    Get PDF
    В статье представлены результаты исследования физической подготовленности студентов транспортного вуза после вынужденной самоизоляции. Установлено, что у большинства студентов первого курса самые низкие показатели отмечаются в силовых характеристиках плечевого пояса и работоспособности сердечно-сосудистой системы, а именно эти показатели являются профессионально значимыми в будущей профессиональной деятельности специалиста железной дороги. Правильно подобранные комплексы упражнений с учетом индивидуальных физических нагрузок смогут обеспечить оптимальный двигательный режим и внести коррекцию в кондиционную подготовленность студента

    Synthesis, Structure, and Magnetic Properties of an Al2O3/Ge-p/Al2O3/Co Thin-Film System

    Get PDF
    Abstract—Structural and magnetic measurements are made of an Al2O3/Ge-p/Al2O3/Co thin-film system. The structure is synthesized via ion-plasma deposition and can be used as a tunnel heterostructure. The dependences of the magnetic properties of cobalt on the rate of its deposition and the rates of deposition of preceding layers are established

    Parametric resonance of capillary waves at the interface between two immiscible Bose-Einstein condensates

    Full text link
    We study parametric resonance of capillary waves on the interface between two immiscible Bose-Einstein condensates pushed towards each other by an oscillating force. Guided by analytical models, we solve numerically the coupled Gross-Pitaevskii equations for two-component Bose-Einstein condensate at zero temperature. We show that, at moderate amplitudes of the driving force, the instability is stabilized due to non-linear modifications of the oscillation frequency. When the amplitude of the driving force is large enough, we observe detachment of droplets from the Bose-Einstein condensates, resulting in generation of quantum vortices (skyrmions). We analytically investigate the vortex dynamics, and conditions of quantized vortex generation.Comment: (Version 2) 11 resized figures. One new reference adde
    corecore