36,144 research outputs found
Neutronics Studies on the NIST Reactor Using the GA LEU fuel
The National Bureau of Standards Reactor (NBSR) located on the National Institute of Standards and Technology (NIST) Gaithersburg campus, is currently underway of fuel conversion from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. One particular challenging part of the conversion of the NBSR is the high average flux level (2.5×1014 n/cm2-s) required to maintain experimental testing capabilities of the reactor, without significant changes to the external structures of the reactor. Recently the General Atomics (GA) Training Research Isotopes General Atomics (TRIGA) fuel has shown some promising features as a LEU candidate for the high performance research reactors such as the NBSR. The GA fuel has a long history of success in conversion of research reactors since it was developed in 1980s. The UZrH compound in the GA fuel has seen success in long term TRIGA reactors, and is a proven safe LEU alternative. This study performs a neutronics evaluation of the TRIGA fuel under the schema of the NBSR’s heavy conversion requirements in order to examine whether the TRIGA fuel is a viable option for conversion of the NBSR. To determine the most optimal path of conversion, we performed a feasibility study with particular regard to the fuel dimensions, fuel rod configurations, cladding, as well as fuel structure selection. Based on the outcome of the feasibility study, an equilibrium core is then generated following the NBSR’s current fuel management schema. Key neutronics performance characteristics including flux distribution, power distribution, control rod (i.e., shim arms) worth, as well as kinetics parameters of the equilibrium core are calculated and evaluated. MCNP6, a Monte Carlo based computational modeling software was intensively used to aid in these calculations. The results of this study will provide important insight on the effectiveness of conversion, as well as determine the viability of the conversion from HEU to LEU using the GA fuel
Nondegeneracy and Stability of Antiperiodic Bound States for Fractional Nonlinear Schr\"odinger Equations
We consider the existence and stability of real-valued, spatially
antiperiodic standing wave solutions to a family of nonlinear Schr\"odinger
equations with fractional dispersion and power-law nonlinearity. As a key
technical result, we demonstrate that the associated linearized operator is
nondegenerate when restricted to antiperiodic perturbations, i.e. that its
kernel is generated by the translational and gauge symmetries of the governing
evolution equation. In the process, we provide a characterization of the
antiperiodic ground state eigenfunctions for linear fractional Schr\"odinger
operators on with real-valued, periodic potentials as well as a
Sturm-Liouville type oscillation theory for the higher antiperiodic
eigenfunctions.Comment: 46 pages, 2 figure
Sensitivity to Hand Path Curvature during Reaching
People optimize reaching to make straight and smooth movements. We performed experiments characterizing human sensitivity to hand path deviations from a straight reach. Vision of the arm was blocked. Subjects either moved the hand along paths of constrained curvature, or a robot moved the relaxed limb along similar trajectories (active and passive conditions, respectively). Subjects responded after each trial whether or not they thought the movement curved convex right. In a series of three experiments, we tested the effects of modifying visual feedback of hand position to suppress curvature, isotonic muscle activation, and a distracter task on subjects ability to detect curvature during reaching. We found that both active reaching and artificial minimization of visual hand path deviations significantly decreased proprioceptive curvature sensitivity. Specifically, isotonic contraction of muscles antagonistic to the movement decreased sensitivity to curvature while agonistic contraction had no effect. The distracter task did not significantly affect proprioceptive sensitivity, though it did interfere with the detrimental effect of minimizing visual error feedback. These findings demonstrate that: 1) antagonist muscle activation decreases efficacy of proprioceptive feedback during hand path curvature estimation, and 2) vision\u27s dominance over proprioception can be manipulated by altering the attentional demands of the task
Searching for Exoplanets Using Artificial Intelligence
In the last decade, over a million stars were monitored to detect transiting
planets. Manual interpretation of potential exoplanet candidates is labor
intensive and subject to human error, the results of which are difficult to
quantify. Here we present a new method of detecting exoplanet candidates in
large planetary search projects which, unlike current methods uses a neural
network. Neural networks, also called "deep learning" or "deep nets" are
designed to give a computer perception into a specific problem by training it
to recognize patterns. Unlike past transit detection algorithms deep nets learn
to recognize planet features instead of relying on hand-coded metrics that
humans perceive as the most representative. Our convolutional neural network is
capable of detecting Earth-like exoplanets in noisy time-series data with a
greater accuracy than a least-squares method. Deep nets are highly
generalizable allowing data to be evaluated from different time series after
interpolation without compromising performance. As validated by our deep net
analysis of Kepler light curves, we detect periodic transits consistent with
the true period without any model fitting. Our study indicates that machine
learning will facilitate the characterization of exoplanets in future analysis
of large astronomy data sets.Comment: Accepted, 16 Pages, 14 Figures,
https://github.com/pearsonkyle/Exoplanet-Artificial-Intelligenc
The "Building Blocks" of Stellar Halos
The stellar halos of galaxies encode their accretion histories. In
particular, the median metallicity of a halo is determined primarily by the
mass of the most massive accreted object. We use hydrodynamical cosmological
simulations from the APOSTLE project to study the connection between the
stellar mass, the metallicity distribution, and the stellar age distribution of
a halo and the identity of its most massive progenitor. We find that the
stellar populations in an accreted halo typically resemble the old stellar
populations in a present-day dwarf galaxy with a stellar mass
dex greater than that of the stellar halo. This suggest that had they not been
accreted, the primary progenitors of stellar halos would have evolved to
resemble typical nearby dwarf irregulars.Comment: 7 pages, 3 figures, published in the proceedings of "On the Origin
(and Evolution) of Baryonic Galaxy Halos", Puerto Ayora, Ecuador, March 13-17
2017, Eds. Duncan A. Forbes and Ericson D. Lope
- …
