876 research outputs found

    Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations

    Get PDF
    We measured the permeability ratios (PX/PNa) of 3 wild-type, 1 hybrid, 2 subunit-deficient, and 22 mutant nicotinic receptors expressed in Xenopus oocytes for alkali metal and organic cations using shifts in the bi-ionic reversal potential of the macroscopic current. Mutations at three positions (2', 6', 10') in M2 affected ion selectivity. Mutations at position 2' (alpha Thr244, beta Gly255, gamma Thr253, delta Ser258) near the intracellular end of M2 changed the organic cation permeability ratios as much as twofold and reduced PCs/PNa and PK/PNa by 16-18%. Mutations at positions 6' and 10' increased the glycine ethyl ester/Na+ and glycine methyl ester/Na+ permeability ratios. Two subunit alterations also affected selectivity: omission of the delta subunit reduced PCs/PNa by 16%, and substitution of Xenopus delta for mouse delta increased Pguanidinium/PNa more than twofold and reduced PCs/PNa by 34% and PLi/PNa by 20%. The wild-type mouse receptor displayed a surprising interaction with the primary ammonium cations; relative permeability peaked at a chain length equal to four carbons. Analysis of the organic permeability ratios for the wild-type mouse receptor shows that (a) the diameter of the narrowest part of the pore is 8.4 A; (b) the mouse receptor departs significantly from size selectivity for monovalent organic cations; and (c) lowering the temperature reduces Pguanidinium/PNa by 38% and Pbutylammonium/PNa more than twofold. The results reinforce present views that positions -1' and 2' are the narrowest part of the pore and suggest that positions 6' and 10' align some permeant organic cations in the pore in an interaction similar to that with channel blocker, QX-222

    Low Molecular Weight mRNA Encodes a Protein That Controls Serotonin 5-HT_(1c) and Acetylcholine M_1 Receptor Sensitivity in Xenopus Oocytes

    Get PDF
    Serotonin 5-HT_(1c) and acetylcholine M_1 receptors activate phosphoinositidase, resulting in an increased formation of IP_3 and 1,2 diacylglycerol. In Xenopus oocytes injected with mRNA encoding either of these receptors, Ca^(2+) released from intracellular stores in response to IP3 then opens Ca^(2+)-gated Cl^-channels. In the present experiments, oocytes expressing a transcript from a cloned mouse serotonin 5-HT_(1c) receptor were exposed to identical 15-s pulses of agonist, administered 2 min apart; the second current response was two to three times that of the first. However, in those oocytes coinjected with the 5-HT_(1c) receptor transcript and a low molecular weight fraction (0.3-1.5 kb) of rat brain mRNA, the second current response was ~50% of the first. Thus, the low molecular weight RNA encodes a protein (or proteins) that causes desensitization. Experiments using fura-2 or a Ca^(2+)-free superfusate indicated that desensitization of the 5-HT_(1c) receptor response does not result from a sustained elevation of intracellular Ca^(2+) level or require the entry of extracellular Ca^(2+). Photolysis of caged IP_3 demonstrated that an increase in IP_3 and a subsequent rise in Ca^(2+) do not produce desensitization of either the IP_3 or 5-HT_(1c) peak current responses. Furthermore, in oocytes coinjected with the low molecular weight RNA and a transcript from the rat M_1 acetylcholine receptor, the M_1 current response was greatly attenuated. Our data suggest that the proteins involved in attenuation of the M_1 current response and desensitization of the 5-HT_(1c) current response may be the same

    Regions of beta 2 and beta 4 responsible for differences between the steady state dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors

    Get PDF
    We constructed chimeras of the rat beta 2 and beta 4 neuronal nicotinic subunits to locate the regions that contribute to differences between the acetylcholine (ACh) dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 receptors. Expressed in Xenopus oocytes, the alpha 3 beta 2 receptor displays an EC50 for ACh approximately 20-fold less than the EC50 of the alpha 3 beta 4 receptor. The apparent Hill slope (n(app)) of alpha 3 beta 2 is near one whereas the alpha 3 beta 4 receptor displays an n(app) near two. Substitutions within the first 120 residues convert the EC50 for ACh from one wild-type value to the other. Exchanging just beta 2:104-120 for the corresponding region of beta 4 shifts the EC50 of ACh dose-response relationship in the expected direction but does not completely convert the EC50 of the dose- response relationship from one wild-type value to the other. However, substitutions in the beta 2:104-120 region do account for the relative sensitivity of the alpha 3 beta 2 receptor to cytisine, tetramethylammonium, and ACh. The expression of beta 4-like (strong) cooperativity requires an extensive region of beta 4 (beta 4:1-301). Relatively short beta 2 substitutions (beta 2:104-120) can reduce cooperativity to beta 2-like values. The results suggest that amino acids within the first 120 residues of beta 2 and the corresponding region of beta 4 contribute to an agonist binding site that bridges the alpha and beta subunits in neuronal nicotinic receptors

    Tris+/Na+ permeability ratios of nicotinic acetylcholine receptors are reduced by mutations near the intracellular end of the M2 region

    Get PDF
    Tris+/Na+ permeability ratios were measured from shifts in the biionic reversal potentials of the macroscopic ACh-induced currents for 3 wild- type (WT), 1 hybrid, 2 subunit-deficient, and 25 mutant nicotinic receptors expressed in Xenopus oocytes. At two positions near the putative intracellular end of M2, 2' (alpha Thr244, beta Gly255, gamma Thr253, delta Ser258) and -1', point mutations reduced the relative Tris+ permeability of the mouse receptor as much as threefold. Comparable mutations at several other positions had no effects on relative Tris+ permeability. Mutations in delta had a greater effect on relative Tris+ permeability than did comparable mutations in gamma; omission of the mouse delta subunit (delta 0 receptor) or replacement of mouse delta with Xenopus delta dramatically reduced relative Tris+ permeability. The WT mouse muscle receptor (alpha beta gamma delta) had a higher relative permeability to Tris+ than the wild-type Torpedo receptor. Analysis of the data show that (a) changes in the Tris+/Na+ permeability ratio produced by mutations correlate better with the hydrophobicity of the amino acid residues in M2 than with their volume; and (b) the mole-fraction dependence of the reversal potential in mixed Na+/Tris+ solutions is approximately consistent with the Goldman- Hodgkin-Katz voltage equation. The results suggest that the main ion selectivity filter for large monovalent cations in the ACh receptor channel is the region delimited by positions -1' and 2' near the intracellular end of the M2 helix

    A G protein-gated K channel is activated via beta 2-adrenergic receptors and G beta gamma subunits in Xenopus oocytes

    Get PDF
    In many tissues, inwardly rectifying K channels are coupled to seven- helix receptors via the Gi/Go family of heterotrimeric G proteins. This activation proceeds at least partially via G beta gamma subunits. These experiments test the hypothesis that G beta gamma subunits activate the channel even if released from other classes of heterotrimeric G proteins. The G protein-gated K channel from rat atrium, KGA/GIRK1, was expressed in Xenopus oocytes with various receptors and G proteins. The beta 2-adrenergic receptor (beta 2AR), a Gs-linked receptor, activated large KGA currents when the alpha subunit, G alpha s, was also overexpressed. Although G alpha s augmented the coupling between beta 2AR and KGA, G alpha s also inhibited the basal, agonist-independent activity of KGA. KGA currents stimulated via beta 2AR activated, deactivated, and desensitized more slowly than currents stimulated via Gi/Go-linked receptors. There was partial occlusion between currents stimulated via beta 2AR and the m2 muscarinic receptor (a Gi/Go-linked receptor), indicating some convergence in the mechanism of activation by these two receptors. Although stimulation of beta 2AR also activates adenylyl cyclase and protein kinase A, activation of KGA via beta 2AR is not mediated by this second messenger pathway, because direct elevation of intracellular cAMP levels had no effect on KGA currents. Experiments with other coexpressed G protein alpha and beta gamma subunits showed that (a) a constitutively active G alpha s mutant did not suppress basal KGA currents and was only partially as effective as wild type G alpha s in coupling beta 2AR to KGA, and (b) beta gamma subunits increased basal KGA currents. These results reinforce present concepts that beta gamma subunits activate KGA, and also suggest that beta gamma subunits may provide a link between KGA and receptors not previously known to couple to inward rectifiers

    Allosteric Control of Gating and Kinetics at P2X₄ Receptor Channels

    Get PDF
    The CNS abundantly expresses P2X receptor channels for ATP; of these the most widespread in the brain is the P2X₄ channel. We show that ivermectin (IVM) is a specific positive allosteric effector of heterologously expressed P2X₄ and possibly of heteromeric P2X₄/P2X₆channels, but not of P2X₂, P2X₃, P2X₂/P2X₃, or P2X₇ channels. In the submicromolar range (EC₅₀, ∼250 nM) the action of IVM was rapid and reversible, resulting in increased amplitude and slowed deactivation of P2X₄ channel currents evoked by ATP. IVM also markedly increased the potency of ATP and that of the normally low-potency agonist α,β-methylene-ATP in a use- and voltage-independent manner without changing the ion selectivity of P2X₄ channels. Therefore, IVM evokes a potent pharmacological gain-of-function phenotype that is specific for P2X₄ channels. We also tested whether IVM could modulate endogenously expressed P2X channels in the adult trigeminal mesencephalic nucleus and hippocampal CA1 neurons. Surprisingly, IVM produced no significant effect on the fast ATP-evoked inward currents in either type of neuron, despite the fact that IVM modulated P2X₄ channels heterologously expressed in embryonic hippocampal neurons. These results suggest that homomeric P2X₄ channels are not the primary subtype of P2X receptor in the adult trigeminal mesencephalic nucleus and in hippocampal CA1 neurons

    Assembly of α4β2 Nicotinic Acetylcholine Receptors Assessed with Functional Fluorescently Labeled Subunits: Effects of Localization, Trafficking, and Nicotine-Induced Upregulation in Clonal Mammalian Cells and in Cultured Midbrain Neurons

    Get PDF
    Fura-2 recording of Ca^(2+) influx was used to show that incubation in 1 μM nicotine (2-6 d) upregulates several pharmacological components of acetylcholine (ACh) responses in ventral midbrain cultures, including a MLA-resistant, DHβE-sensitive component that presumably corresponds to α4β2 receptors. To study changes in α4β2 receptor levels and assembly during this upregulation, we incorporated yellow and cyan fluorescent proteins (YFPs and CFPs) into the α4 or β2 M3-M4 intracellular loops, and these subunits were coexpressed in human embryonic kidney (HEK) 293T cells and cultured ventral midbrain neurons. The fluorescent receptors resembled wild-type receptors in maximal responses to ACh, dose-response relations, ACh-induced Ca^(2+) influx, and somatic and dendritic distribution. Transfected midbrain neurons that were exposed to nicotine (1 d) displayed greater levels of fluorescent α4 and β2 nicotinic ACh receptor (nAChR) subunits. As expected from the hetero-multimeric nature of α4β2 receptors, coexpression of the α4-YFP and β2-CFP subunits resulted in robust fluorescence resonance energy transfer (FRET), with a FRET efficiency of 22%. In midbrain neurons, dendritic α4β2 nAChRs displayed greater FRET than receptors inside the soma, and in HEK293T cells, a similar increase was noted for receptors that were translocated to the surface during PKC stimulation. When cultured transfected midbrain neurons were incubated in 1 μMnicotine, there was increased FRET in the cell body, denoting increased assembly of α4β2 receptors. Thus, changes in α4β2 receptor assembly play a role in the regulation of α4β2 levels and responses in both clonal cell lines and midbrain neurons, and the regulation may result from Ca^(2+)-stimulated pathways
    corecore