2,947 research outputs found

    Temperature dependent relaxation of dipole-exchange magnons in yttrium iron garnet films

    Full text link
    Low energy consumption enabled by charge-free information transport, which is free from ohmic heating, and the ability to process phase-encoded data by nanometer-sized interference devices at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons-spin-wave quanta-is of high relevance for the fields of magnonics, magnon spintronics and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wavenumbers from zero up to 6105rad cm16\cdot 10^5 \mathrm{rad~cm}^{-1} was experimentally investigated in the temperature range from 20 K to 340 K in single crystal yttrium iron garnet (YIG) films epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal-the magnonic materials featuring the lowest magnetic damping known so far. As opposed to the bulk YIG crystal in YIG films we have found a significant increase in the magnon relaxation rate below 150 K-up to 10.5 times the reference value at 340 K-in the entire range of probed wavenumbers. This increase is associated with rare-earth impurities contaminating the YIG samples with a slight contribution caused by coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures

    The impact of alkyl chain purity on lipid based nucleic acid delivery systems – is the utilization of lipid components with technical grade justified?

    No full text
    The physicochemical properties and transfection efficacies of two samples of a cationic lipid have been investigated and compared in 2D (monolayers at the air/liquid interface) and 3D (aqueous bulk dispersions) model systems using different techniques. The samples differ only in their chain composition due to the purity of the oleylamine (chain precursor). Lipid 8 (using the oleylamine of technical grade for cost-efficient synthesis) shows lateral phase separation in the Langmuir layers. However, the amount of attached DNA, determined by IRRAS, is for both samples the same. In 3D systems, lipid 8 p forms cubic phases, which disappear after addition of DNA. At physiological temperatures, both lipids (alone and in mixture with cholesterol) assemble to lamellar aggregates and exhibit comparable DNA delivery efficiency. This study demonstrates that non-lamellar structures are not compulsory for high transfection rates. The results legitimate the utilization of oleyl chains of technical grade in the synthesis of cationic transfection lipid

    Thermal conductance of thin film YIG determined using Bayesian statistics

    Full text link
    Thin film YIG (Y3_3Fe5_5O12_{12}) is a prototypical material for experiments on thermally generated pure spin currents and the spin Seebeck effect. The 3-omega method is an established technique to measure the cross-plane thermal conductance of thin films, but can not be used in YIG/GGG (Ga3_3Gd5_5O12_{12}) systems in its standard form. We use two-dimensional modeling of heat transport and introduce a technique based on Bayesian statistics to evaluate measurement data taken from the 3-omega method. Our analysis method allows us to study materials systems that have not been accessible with the conventionally used 3-omega analysis. Temperature dependent thermal conductance data of thin film YIG are of major importance for experiments in the field of spin-caloritronics. Here we show data between room temperature and 10 K for films covering a wide thickness range as well as the magnetic field effect on the thermal conductance between 10 K and 50 K

    Determination of the spin-flip time in ferromagnetic SrRuO3 from time-resolved Kerr measurements

    Get PDF
    We report time-resolved Kerr effect measurements of magnetization dynamics in ferromagnetic SrRuO3. We observe that the demagnetization time slows substantially at temperatures within 15K of the Curie temperature, which is ~ 150K. We analyze the data with a phenomenological model that relates the demagnetization time to the spin flip time. In agreement with our observations the model yields a demagnetization time that is inversely proportional to T-Tc. We also make a direct comparison of the spin flip rate and the Gilbert damping coefficient showing that their ratio very close to kBTc, indicating a common origin for these phenomena

    Stealthy Deception Attacks Against SCADA Systems

    Full text link
    SCADA protocols for Industrial Control Systems (ICS) are vulnerable to network attacks such as session hijacking. Hence, research focuses on network anomaly detection based on meta--data (message sizes, timing, command sequence), or on the state values of the physical process. In this work we present a class of semantic network-based attacks against SCADA systems that are undetectable by the above mentioned anomaly detection. After hijacking the communication channels between the Human Machine Interface (HMI) and Programmable Logic Controllers (PLCs), our attacks cause the HMI to present a fake view of the industrial process, deceiving the human operator into taking manual actions. Our most advanced attack also manipulates the messages generated by the operator's actions, reversing their semantic meaning while causing the HMI to present a view that is consistent with the attempted human actions. The attacks are totaly stealthy because the message sizes and timing, the command sequences, and the data values of the ICS's state all remain legitimate. We implemented and tested several attack scenarios in the test lab of our local electric company, against a real HMI and real PLCs, separated by a commercial-grade firewall. We developed a real-time security assessment tool, that can simultaneously manipulate the communication to multiple PLCs and cause the HMI to display a coherent system--wide fake view. Our tool is configured with message-manipulating rules written in an ICS Attack Markup Language (IAML) we designed, which may be of independent interest. Our semantic attacks all successfully fooled the operator and brought the system to states of blackout and possible equipment damage

    Are You Tampering With My Data?

    Full text link
    We propose a novel approach towards adversarial attacks on neural networks (NN), focusing on tampering the data used for training instead of generating attacks on trained models. Our network-agnostic method creates a backdoor during training which can be exploited at test time to force a neural network to exhibit abnormal behaviour. We demonstrate on two widely used datasets (CIFAR-10 and SVHN) that a universal modification of just one pixel per image for all the images of a class in the training set is enough to corrupt the training procedure of several state-of-the-art deep neural networks causing the networks to misclassify any images to which the modification is applied. Our aim is to bring to the attention of the machine learning community, the possibility that even learning-based methods that are personally trained on public datasets can be subject to attacks by a skillful adversary.Comment: 18 page
    corecore