930 research outputs found
An exploratory study of the hard X-ray variability properties of PG quasars with RXTE
We have monitored with the RXTE PCA the variability pattern of the 2-20 keV
flux in four PG quasars (QSOs) from the Laor et al. (1994) sample. Six
observations of each target at regular intervals of 1 day were performed. The
sample comprises objects with extreme values of Balmer line width (and hence
soft X-ray steepness) and spans about one order of magnitude in luminosity. The
most robust result is that the variability amplitude decreases as energy
increases. Several options for a possible ultimate driver of the soft and hard
X-ray variability, such as the influx rate of Comptonizing relativistic
particles, instabilities in the accretion flow or the number of X-ray active
sites, are consistent with our results.Comment: Contributed talk presented at the Joint MPE,AIP,ESO workshop on
NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also
available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho
The Lyman Continuum Polarization Rise in the QSO PG 1222+228
Some QSOs show an abrupt, strong rise in polarization near rest wavelength
750 A. If this arises in the atmosphere of an accretion disk around a
supermassive black hole, it may have diagnostic value. In PG 1222+228, the
polarization rise occurs at the wavelength of a sharp drop in flux. We examine
and reject interpretations of this feature involving a high velocity outflow.
The observations agree with a model involving several intervening Lyman limit
systems, two of which happen to coincide with the Lyman continuum polarization
rise. After correction for the Lyman limit absorption, the continuum shortward
of 912 A is consistent with a typical power-law slope, alpha = -1.8. This
violates the apparent pattern for the Lyman limit polarization rises to occur
only in ``candidate Lyman edge QSOs''. The corrected, polarized flux rises
strongly at the wavelength of the polarization rise, resembling the case of PG
1630+377. The rise in polarized flux places especially stringent requirements
on models.Comment: 19 pages, including 5 EPS figures. Uses aaspp4.sty. Accepted for
publication in Publications of the Astronomical Society of the Pacific, 2000
Ma
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks
We have constructed a grid of non-LTE disk models for a wide range of black
hole mass and mass accretion rate, for several values of viscosity parameter
alpha, and for two extreme values of the black hole spin: the maximum-rotation
Kerr black hole, and the Schwarzschild (non-rotating) black hole. Our procedure
calculates self-consistently the vertical structure of all disk annuli together
with the radiation field, without any approximations imposed on the optical
thickness of the disk, and without any ad hoc approximations to the behavior of
the radiation intensity. The total spectrum of a disk is computed by summing
the spectra of the individual annuli, taking into account the general
relativistic transfer function. The grid covers nine values of the black hole
mass between M = 1/8 and 32 billion solar masses with a two-fold increase of
mass for each subsequent value; and eleven values of the mass accretion rate,
each a power of 2 times 1 solar mass/year. The highest value of the accretion
rate corresponds to 0.3 Eddington. We show the vertical structure of individual
annuli within the set of accretion disk models, along with their local emergent
flux, and discuss the internal physical self-consistency of the models. We then
present the full disk-integrated spectra, and discuss a number of
observationally interesting properties of the models, such as
optical/ultraviolet colors, the behavior of the hydrogen Lyman limit region,
polarization, and number of ionizing photons. Our calculations are far from
definitive in terms of the input physics, but generally we find that our models
exhibit rather red optical/UV colors. Flux discontinuities in the region of the
hydrogen Lyman limit are only present in cool, low luminosity models, while
hotter models exhibit blueshifted changes in spectral slope.Comment: 20 pages, 31 figures, ApJ in press, spectral models are available for
downloading at http://www.physics.ucsb.edu/~blaes/habk
Polarimetric Imaging of the Massive Black Hole at the Galactic Center
The radio source Sgr A* in the Galactic center emits a polarized spectrum at
millimeter and sub-millimeter wavelengths that is strongly suggestive of
relativistic disk accretion onto a massive black hole. We use the
well-constrained mass of Sgr A* and a magnetohydrodynamic model of the
accretion flow to match both the total flux and polarization from this object.
Our results demonstrate explicitly that the shift in the position angle of the
polarization vector, seen at wavelengths near the peak of the mm to sub-mm
emission from this source, is a signal of relativistic accretion flow in a
strong gravitational field. We provide maps of the polarized emission to
illustrate how the images of polarized intensity from the vicinity of the black
hole would appear in upcoming observations with very long baseline radio
interferometers (VLBI). Our results suggest that near-term VLBI observations
will be able to directly image the polarized Keplerian portion of the flow near
the horizon of the black hole.Comment: 12 pages, 2 figures, Accepted for publciation in ApJ Letter
On the Baldwin Effect in Active Galactic Nuclei: I. The Continuum-Spectrum - Mass Relationship
We suggest that the Baldwin Effect is a result of the spectral dependence of
the line-driving ionizing continuum on the black hole mass. We derive a
relationship between the mass of the central black hole and the broad emission
line luminosity in active galactic nuclei (AGN). Assuming the UV spectrum of
AGN is emitted from an optically thick medium we find an expression for the
characteristic energy of the ``UV bump'' in terms of the observable luminosity
and emission-line width. We show empirically and analytically that the bump
energy is anti-correlated with the black-hole mass and with the continuum
luminosity. Our model reproduces the observed inverse correlation between
equivalent width and continuum luminosity, yielding an explanation of the
Baldwin effect from first principles. The model gives a good fit to the Baldwin
Effect of the CIV line for a mean quasar EUV spectrum (Zheng et al. 1997) and
for several model spectra. The model also predicts a correlation between the
strength of the Baldwin Effect (the slope of the equivalent width as a function
of luminosity) and the ionization potential, consistent with recent data.Comment: 19 pages Latex, 2 figures. Accepted for publication in the
Astrophysical Journa
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei
We present self-consistent models of the vertical structure and emergent
spectrum of AGN accretion disks. The central object is assumed to be a
supermassive Kerr black hole. We demonstrate that NLTE effects and the effects
of a self-consistent vertical structure of a disk play a very important role in
determining the emergent radiation, and therefore should be taken into account.
In particular, NLTE models exhibit a largely diminished H I Lyman discontinuity
when compared to LTE models, and the He II discontinuity appears strongly in
emission for NLTE models. Consequently, the number of ionizing photons in the
He II Lyman continuum predicted by NLTE disk models is by 1 - 2 orders of
magnitude higher than that following from the black-body approximation. This
prediction has important implications for ionization models of AGN broad line
regions, and for models of the intergalactic radiation field and the ionization
of helium in the intergalactic medium.Comment: 11 pages; 2 postscript figures; LaTeX, AASPP4 macro; to appear in the
Astrophysical Journal (Letters
Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei: I. Comparing the Photoionization and Reverberation Techniques
The masses and emission-line region sizes of Active Galactic Nuclei (AGNs)
can be measured by ``reverberation-mapping'' (measuring the lag of the
emission-line luminosity after changes in the continuum). We use tis technique
to calibrate similar size and mass estimates made by photoionization models of
the AGN line-emitting regions. We compile a sample of 19 AGNs with reliable
reverberation and spectroscopy data, twice the number available previously. The
data provide strong evidence that the BLR size and the emission-line width
measure directly the central mass. Two methods are used to estimate the
distance of the broad emission-line region (BLR) from the ionizing source: the
photoionization method (available for many AGNs but has large intrinsic
uncertainties), and the reverberation method (gives very reliable distances,
but available for only a few objects). The distance estimate is combined with
the velocity dispersion, derived from the broad Hb line profile, to estimate
the virial mass. Comparing the central masses calculated with the reverberation
method to those calculated using a photoionization model, we find a highly
significant, nearly linear correlation. This provides a calibration of the
photoionization method on the objects with presently available reverberation
data, which should enable mass estimates for all AGNs with measured Hb line
width. Comparing the BLR sizes given by the two methods also enables us to
estimate the ionizing EUV luminosity which is directly unobservable. We find it
to be typically ten times the visible (monochromatic luminosity at 5100A). The
inferred Eddington ratio of the individual objects in our sample are 0.001-0.03
(visible luminosity) and 0.01-0.3 (ionizing luminosity).Comment: 27 pages Latex, 8 figures. Accepted for publication in the
Astrophysical Journa
HST STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-line Seyfert 1 Galaxies: II. Modeling and Interpretation
We present modeling to explore the conditions of the broad-line emitting gas
in two extreme Narrow-line Seyfert 1 galaxies, using the observational results
described in the first paper of this series. Photoionization modeling using
Cloudy was conducted for the broad, blueshifted wind lines and the narrow,
symmetric, rest-wavelength-centered disk lines separately. A broad range of
physical conditions were explored for the wind component, and a figure of merit
was used to quantitatively evaluate the simulation results. Of the three minima
in the figure-of-merit parameter space, we favor the solution characterized by
an X-ray weak continuum, elevated abundances, a small column density
(log(N_H)\approx 21.4), relatively high ionization parameter (log(U)\approx
-1.2 - -0.2), a wide range of densities (log(n)\approx 7 - 11), and a covering
fraction of ~0.15. The presence of low-ionization emission lines implies the
disk component is optically thick to the continuum, and the SiIII]/CIII] ratio
implies a density of 10^10 - 10^10.25 cm^-3. A low ionization parameter
(log(U)=-3) is inferred for the intermediate-ionization lines, unless the
continuum is ``filtered'' through the wind before illuminating the
intermediate-line emitting gas, in which case log(U)=-2.1. The location of the
emission regions was inferred from the photoionization modeling and a simple
``toy'' dynamical model. A large black hole mass (1.3 x 10^8 M_\odot) radiating
at 11% of the Eddington luminosity is consistent with the kinematics of both
the disk and wind lines, and an emission radius of ~10^4 R_S is inferred for
both. We compare these results with previous work and discuss implications.Comment: 45 pages, 15 figures (4 color), accepted for publication in ApJ,
abstract shortene
- …
