1,106 research outputs found

    La connaissance des coûts complets des activités et autres outils de management

    Get PDF
    Ce sont les activités qui consomment les ressources et non les produits. L'analyse des activités doit passer par "value analysis" et par "re-engineering". Les coûts complets comprennent: frais fixes, variables, et coûts cachés. Les coûts sont à comparer par "benchmarking". On peut pratiquer le "target costing. La principale source des coûts est générée par les ressources humaines, même si les différences entre les savoir-faire diminuent, c'est sur le vouloir que tout se joue. Vouloir en particulier la satisfaction du client conduit au T.Q.M. Le management des projets est une affaire de communication et d'intégration de différentes logiques. Les prix de cessions internes sont issus du coût complet, partiel, ou du prix du marché. Enfin, connaissance et comparaison des coûts des activités sont déterminantes face à l'alternative Faire ou Faire-faire

    3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability

    Full text link
    The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be so relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Here, based on results from our 3D global climate model, we find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation radius significantly exceeds the planetary radius. Using analytical and numerical arguments, we also demonstrate the presence of systematic biases between mean surface temperatures or temperature profiles predicted from either 1D or 3D simulations. Including a complete modeling of the water cycle, we further demonstrate that for land planets closer than the inner edge of the classical habitable zone, two stable climate regimes can exist. One is the classical runaway state, and the other is a collapsed state where water is captured in permanent cold traps. We identify this "moist" bistability as the result of a competition between the greenhouse effect of water vapor and its condensation. We also present synthetic spectra showing the observable signature of these two states. Taking the example of two prototype planets in this regime, namely Gl581c and HD85512b, we argue that they could accumulate a significant amount of water ice at their surface. If such a thick ice cap is present, gravity driven ice flows and geothermal flux should come into play to produce long-lived liquid water at the edge and/or bottom of the ice cap. Consequently, the habitability of planets at smaller orbital distance than the inner edge of the classical habitable zone cannot be ruled out. Transiting planets in this regime represent promising targets for upcoming observatories like EChO and JWST.Comment: Accepted for publication in Astronomy and Astrophysics, complete abstract in the pdf, 18 pages, 18 figure

    Pattern of Reaction Diffusion Front in Laminar Flows

    Get PDF
    Autocatalytic reaction between reacted and unreacted species may propagate as solitary waves, namely at a constant front velocity and with a stationary concentration profile, resulting from a balance between molecular diffusion and chemical reaction. The effect of advective flow on the autocatalytic reaction between iodate and arsenous acid in cylindrical tubes and Hele-Shaw cells is analyzed experimentally and numerically using lattice BGK simulations. We do observe the existence of solitary waves with concentration profiles exhibiting a cusp and we delineate the eikonal and mixing regimes recently predicted.Comment: 4 pages, 3 figures. This paper report on experiments and simulations in different geometries which test the theory of Boyd Edwards on flow advection of chemical reaction front which just appears in PRL (PRL Vol 89,104501, sept2002

    The effect of rotation and tidal heating on the thermal lightcurves of Super Mercuries

    Full text link
    Short period (<50 days) low-mass (<10Mearth) exoplanets are abundant and the few of them whose radius and mass have been measured already reveal a diversity in composition. Some of these exoplanets are found on eccentric orbits and are subjected to strong tides affecting their rotation and resulting in significant tidal heating. Within this population, some planets are likely to be depleted in volatiles and have no atmosphere. We model the thermal emission of these "Super Mercuries" to study the signatures of rotation and tidal dissipation on their infrared light curve. We compute the time-dependent temperature map at the surface and in the subsurface of the planet and the resulting disk-integrated emission spectrum received by a distant observer for any observation geometry. We calculate the illumination of the planetary surface for any Keplerian orbit and rotation. We include the internal tidal heat flow, vertical heat diffusion in the subsurface and generate synthetic light curves. We show that the different rotation periods predicted by tidal models (spin-orbit resonances, pseudo-synchronization) produce different photometric signatures, which are observable provided that the thermal inertia of the surface is high, like that of solid or melted rocks (but not regolith). Tidal dissipation can also directly affect the light curves and make the inference of the rotation more difficult or easier depending on the existence of hot spots on the surface. Infrared light curve measurement with the James Webb Space Telescope and EChO can be used to infer exoplanets' rotation periods and dissipation rates and thus to test tidal models. This data will also constrain the nature of the (sub)surface by constraining the thermal inertia.Comment: 15 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    In Situ Treatment of Thermal RF Plasma Processed Nanopowders to Control their Agglomeration and Dispersability

    Get PDF
    Titanium carbonitride nanoparticles have been produced in an inductively coupled thermal plasma and subsequently modified using a surfactant that has been deposited in situ on their surface in-flight. The surfactant was injected in the reactor while the nanoparticles are still dispersed in the gas phase, allowing the coating of primary particles instead of the corresponding agglomerates. In contrast to naked TiCN nanoparticles, the surfactant coated particles could be readily dispersed in water with a short ultrasonic treatment and built up no large agglomerates as proved by Photon Correlation Spectroscopy measurements. The investigated surfactants seem, however, to undergo a chemical modification and/or a thermal degradation at the surface of the TiCN nanoparticle

    Projet de paysage participatif à Villandry

    Get PDF
    Cette recherche s’inscrit dans le cadre du projet intitulé « Participation des populations et renouvellement des pratiques paysagistes. Une approche par l’expérimentation et la comparaison des méthodes » au sein du programme « Paysage et Développement durable II », porté par le MEDDE. L’originalité de ce projet tient en partie à la collaboration entre des enseignants-chercheurs de trois écoles de paysage françaises (Angers, Versailles et Bordeaux) et des paysagistes, engagés ensemble dans deux démarches expérimentales. Nous revenons plus particulièrement dans cet article sur l’une des deux expérimentations, conduite sur la commune de Villandry dans le Val de Loire

    Increased insolation threshold for runaway greenhouse processes on Earth like planets

    Full text link
    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m2^2, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback on the long term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to defer the runaway greenhouse limit to higher insolation than inferred from 1D models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains cold and dry enough to hamper atmospheric water escape, even at large fluxes. This has strong implications for Venus early water history and extends the size of the habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013. Accepted version before journal editing and with Supplementary Informatio

    Tidal decay and orbital circularization in close-in two-planet systems

    Get PDF
    The motion of two planets around a Sun-like star under the combined effects of mutual interaction and tidal dissipation is investigated. The secular behaviour of the system is analyzed using two different approaches. First, we solve the exact equations of motion through the numerical simulation of the system evolution. In addition to the orbital decay and circularization, we show that the final configuration of the system is affected by the shrink of the inner orbit. Our second approach consist in the analysis of the stationary solutions of mean equations of motion based on a Hamiltonian formalism. We consider the case of a hot super-Earth planet with a more massive outer companion. As a real example, the CoRoT-7 system is analyzed solving the exact and mean equations of motion. The star-planet tidal interaction produces orbital decay and circularization of the orbit of CoRoT-7b. In addition, the long-term tidal evolution is such that the eccentricity of CoRoT-7c is also circularized and a pair of final circular orbits is obtained. A curve in the space of eccentricities can be constructed through the computation of stationary solutions of mean equations including dissipation. The application to CoRoT-7 system shows that the stationary curve agrees with the result of numerical simulations of exact equations. A similar investigation performed in a super-Earth-Jupiter two-planet system shows that the doubly circular state is accelerated when there is a significant orbital migration of the inner planet, in comparison with previous results were migration is neglected.Comment: Accepted for publication in MNRAS; 10 pages, 13 figure

    Technical design and performance of the NEMO3 detector

    Full text link
    The development of the NEMO3 detector, which is now running in the Frejus Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun more than ten years ago. The NEMO3 detector uses a tracking-calorimeter technique in order to investigate double beta decay processes for several isotopes. The technical description of the detector is followed by the presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author: Corinne Augier ([email protected]
    corecore