7,411 research outputs found

    Geometry of Generic Isolated Horizons

    Full text link
    Geometrical structures intrinsic to non-expanding, weakly isolated and isolated horizons are analyzed and compared with structures which arise in other contexts within general relativity, e.g., at null infinity. In particular, we address in detail the issue of singling out the preferred normals to these horizons required in various applications. This work provides powerful tools to extract invariant, physical information from numerical simulations of the near horizon, strong field geometry. While it complements the previous analysis of laws governing the mechanics of weakly isolated horizons, prior knowledge of those results is not assumed.Comment: 37 pages, REVTeX; Subsections V.B and V.C moved to a new Appenedix to improve the flow of main argument

    SCDAS - Decision Support System for Group Decision Making: Information Processing Issues

    Get PDF
    Most research in the field of computerized Group Decision Support System is devoted to the analysis and support of the quantitative phase of decision processes using various methods of multiple-criteria analysis. Experience shows that the soft side of the decision process also needs support. This relates mostly to the distribution of textual information that augments the quantitative side of the decision process and to provides the linkage between such information and numerical data. This aspect is especially important when the decision support system is implemented in a distributed computing environment. In this paper possible forms of information processed within the SCDAS system are analyzed and the framework for implementing the software that provides such processing functions is presented

    Completeness of Wilson loop functionals on the moduli space of SL(2,C)SL(2,C) and SU(1,1)SU(1,1)-connections

    Get PDF
    The structure of the moduli spaces \M := \A/\G of (all, not just flat) SL(2,C)SL(2,C) and SU(1,1)SU(1,1) connections on a n-manifold is analysed. For any topology on the corresponding spaces \A of all connections which satisfies the weak requirement of compatibility with the affine structure of \A, the moduli space \M is shown to be non-Hausdorff. It is then shown that the Wilson loop functionals --i.e., the traces of holonomies of connections around closed loops-- are complete in the sense that they suffice to separate all separable points of \M. The methods are general enough to allow the underlying n-manifold to be topologically non-trivial and for connections to be defined on non-trivial bundles. The results have implications for canonical quantum general relativity in 4 and 3 dimensions.Comment: Plain TeX, 7 pages, SU-GP-93/4-

    Quantum group connections

    Full text link
    The Ahtekar-Isham C*-algebra known from Loop Quantum Gravity is the algebra of continuous functions on the space of (generalized) connections with a compact structure Lie group. The algebra can be constructed by some inductive techniques from the C*-algebra of continuous functions on the group and a family of graphs embedded in the manifold underlying the connections. We generalize the latter construction replacing the commutative C*-algebra of continuous functions on the group by a non-commutative C*-algebra defining a compact quantum group.Comment: 40 pages, LaTeX2e, minor mistakes corrected, abstract slightly change

    Volume and Quantizations

    Get PDF
    The aim of this letter is to indicate the differences between the Rovelli-Smolin quantum volume operator and other quantum volume operators existing in the literature. The formulas for the operators are written in a unifying notation of the graph projective framework. It is clarified whose results apply to which operators and why.Comment: 8 page

    Extremal Isolated Horizons: A Local Uniqueness Theorem

    Get PDF
    We derive all the axi-symmetric, vacuum and electrovac extremal isolated horizons. It turns out that for every horizon in this class, the induced metric tensor, the rotation 1-form potential and the pullback of the electromagnetic field necessarily coincide with those induced by the monopolar, extremal Kerr-Newman solution on the event horizon. We also discuss the general case of a symmetric, extremal isolated horizon. In particular, we analyze the case of a two-dimensional symmetry group generated by two null vector fields. Its relevance to the classification of all the symmetric isolated horizons, including the non-extremal once, is explained.Comment: 22 pages, page size changed, typos and equations (142), (143a) corrected, PACS number adde

    Conformal Standard Model with an extended scalar sector

    Get PDF
    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3)N_N that complements the standard U(1)BL_{B-L} symmetry, and is broken explicitly only by the Yukawa interaction, of order 10610^{-6}, coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3)N_N symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (`softly broken conformal symmetry'). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.Comment: version accepted for publication in the JHEP, 41 pages, 1 figur

    Mechanics of multidimensional isolated horizons

    Full text link
    Recently a multidimensional generalization of Isolated Horizon framework has been proposed by Lewandowski and Pawlowski (gr-qc/0410146). Therein the geometric description was easily generalized to higher dimensions and the structure of the constraints induced by the Einstein equations was analyzed. In particular, the geometric version of the zeroth law of the black hole thermodynamics was proved. In this work we show how the IH mechanics can be formulated in a dimension--independent fashion and derive the first law of BH thermodynamics for arbitrary dimensional IH. We also propose a definition of energy for non--rotating horizons.Comment: 25 pages, 4 figures (eps), last sections revised, acknowledgements and a section about the gauge invariance of introduced quantities added; typos corrected, footnote 4 on page 9 adde
    corecore