655 research outputs found
Self-reported sleep disturbance in Crohn’s disease is not confrmed by objective sleep measures
Novel coal gasification process: Improvement of syngas yield and reduction of emissions
This article is intended to propose and model an innovative process layout for coal gasification that improves the production of syngas and also reduces the sulfur and CO2emissions. The typical coal gasification process uses Sulfur Recovery Units to convert H2S to sulfur, but these have some disadvantage, e.g low sulfur price, coal charge with low sulfur flow rate, use of Tail Gas Treatment unit. Compared to the Claus process, this solution converts H2S and CO2into syngas (economically appealing), reduces emission of H2S and CO2and allows the use of coal charge with high sulfur flow rate, e.g. 9.5% mol/mol. The novel process takes advantage of a double amine wash, a thermal regenerative furnace and considers the recycle of the acid gases coming from the catalytic reactor to further promote the H2S conversion. In particular, the double amine wash is useful to purify the H2S stream to be sent to the thermal furnace from the syngas and CO2, in order to reduce the reactor inlet flow rate. The regenerative furnace is simulated using a large detailed kinetic scheme to appropriately describe the minor species (among them, pollutants like CS2 and COS). As a result, the recycle appears to substantially reduce the pollutant emissions. In addition, the conversion of the Claus process into the novel process doesn't require any change in the main equipment, just needing for a variation in the layout and the operating conditions
Statistical Analysis of a Semilinear Hyperbolic System Advected by a White in Time Random Velocity Field
We study a system of semilinear hyperbolic equations passively advected by
smooth white noise in time random velocity fields. Such a system arises in
modeling non-premixed isothermal turbulent flames under single-step kinetics of
fuel and oxidizer. We derive closed equations for one-point and multi-point
probability distribution functions (PDFs) and closed form analytical formulas
for the one point PDF function, as well as the two-point PDF function under
homogeneity and isotropy. Exact solution formulas allows us to analyze the
ensemble averaged fuel/oxidizer concentrations and the motion of their level
curves. We recover the empirical formulas of combustion in the thin reaction
zone limit and show that these approximate formulas can either underestimate or
overestimate average concentrations when reaction zone is not tending to zero.
We show that the averaged reaction rate slows down locally in space due to
random advection induced diffusion; and that the level curves of ensemble
averaged concentration undergo diffusion about mean locations.Comment: 18 page
Radiant ignition of a reactive solid with in-depth absorption
An asymptotic analysis of the limit of large activation energy is presented for radiant ignition of a solid that experiences a one-step Arrhenius reaction in the condensed phase. Both constant and time-dependent radiant-energy fluxes arc considered, and the complete range of values is covered for the absorption coefficient ji. It is shown that as » increases, the structure of the transition stage, which follows the inert heat-conduction stage, passes from a thermal explosion without heat conduction, to a single transient heat-conduction zone with distributed chemical heat release, to a two-zone structure composed of a reactive-diffusive-absorptive zone near the surface and a transient-diffusive zone in the interior. For very high values of u, the reactive-diffusive-absorptive zone further splits into a surface absorption zone and an interior reactive-diffusive zone, thereby reproducing results obtained previously for ignition by a surface-applied energy flux. The analysis shows that contrary to earlier expectation, the nondimensional absorption coefficient must be at least as large as the nondimensional activation energy for in-depth absorption to affect the ignition time negligibly
Reaction front propagation in a turbulent flow
The propagation of reaction fronts was studied by direct numerical simulations. The velocity field was obtained by integrating the Navier-Stokes equation. The structure of the reaction front and the enhancement of the front propagation speed were investigated. The ratio of eddy turnover times and of the characteristic chemical time scale was determined
Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity
The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbulent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the well-known time-evolving problem and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a linear system of equations. Numerical solutions of these equations for a two-dimensional reacting mixing layer show that the correction to the time-evolving solution may explain the asymmetry of the entrainment and the differences in product generation observed in flip experiments
Toroidal Miller-Turner and Soloviev CME models in EUHFORIA: I. Implementation
The aim of this paper is to present the implementation of two new CME models
in the space weather forecasting tool, EUHFORIA. We introduce the two toroidal
CME models analytically, along with their numerical implementation in EUHFORIA.
One model is based on the modified Miller-Turner (mMT) solution, while the
other is derived from the Soloviev equilibrium, a specific solution of the
Grad-Shafranov equation. The magnetic field distribution in both models is
provided in analytic formulae, enabling a swift numerical computation. After
detailing the differences between the two models, we present a collection of
thermodynamic and magnetic profiles obtained at Earth using these CME solutions
in EUHFORIA with a realistic solar wind background. Subsequently, we explore
the influence of their initial parameters on the time profiles at L1. In
particular, we examine the impact of the initial density, magnetic field
strength, velocity, and minor radius. In EUHFORIA, we obtained different
thermodynamic and magnetic profiles depending on the CME model used. We found
that changing the initial parameters affects both the amplitude and the trend
of the time profiles. For example, using a high initial speed results in a fast
evolving and compressed magnetic structure. The speed of the CME is also linked
to the strength of the initial magnetic field due to the contribution of the
Lorentz force on the CME expansion. However, increasing the initial magnetic
field also increases the computation time. Finally, the expansion and integrity
of the magnetic structure can be controlled via the initial density of the CME.
Both toroidal CME models are successfully implemented in EUHFORIA and can be
utilized to predict the geo-effectiveness of the impact of real CME events.
Moreover, the current implementation could be easily modified to model other
toroidal magnetic configurations
Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population
PURPOSE: The aim of this study was to estimate the contribution of deleterious mutations in the RAD51B, RAD51C, and RAD51D genes to invasive epithelial ovarian cancer (EOC) in the population and in a screening trial of individuals at high risk of ovarian cancer. PATIENTS AND METHODS: The coding sequence and splice site boundaries of the three RAD51 genes were sequenced and analyzed in germline DNA from a case-control study of 3,429 patients with invasive EOC and 2,772 controls as well as in 2,000 unaffected women who were BRCA1/BRCA2 negative from the United Kingdom Familial Ovarian Cancer Screening Study (UK_FOCSS) after quality-control analysis. RESULTS: In the case-control study, we identified predicted deleterious mutations in 28 EOC cases (0.82%) compared with three controls (0.11%; P < .001). Mutations in EOC cases were more frequent in RAD51C (14 occurrences, 0.41%) and RAD51D (12 occurrences, 0.35%) than in RAD51B (two occurrences, 0.06%). RAD51C mutations were associated with an odds ratio of 5.2 (95% CI, 1.1 to 24; P = .035), and RAD51D mutations conferred an odds ratio of 12 (95% CI, 1.5 to 90; P = .019). We identified 13 RAD51 mutations (0.65%) in unaffected UK_FOCSS participants (RAD51C, n = 7; RAD51D, n = 5; and RAD51B, n = 1), which was a significantly greater rate than in controls (P < .001); furthermore, RAD51 mutation carriers were more likely than noncarriers to have a family history of ovarian cancer (P < .001). CONCLUSION: These results confirm that RAD51C and RAD51D are moderate ovarian cancer susceptibility genes and suggest that they confer levels of risk of EOC that may warrant their use alongside BRCA1 and BRCA2 in routine clinical genetic testing
Additivity of relative magnetic helicity in finite volumes
CONTEXT: Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, in other words that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. AIMS: Progress in understanding the nonadditivity of relative magnetic helicity requires removal of restrictive assumptions in favor of a general formalism that can be used in both theoretical investigations and numerical applications. METHODS: We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. RESULTS: We prove the nonadditivity of relative magnetic helicity in finite volumes in the most general, gauge-invariant formalism, and verify this numerically. We adopt more restrictive assumptions to derive known specific approximations, which yields a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the nonadditivity term in the partition equation is, in general, non-negligible. CONCLUSIONS: The nonadditivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint on the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of nonadditivity on global helicity budgets of complex physical processes
Diffusion-flame flickering as a hydrodynamic global mode
The present study employs a linear global stability analysis to investigate buoyancy-induced flickering of axisymmetric laminar jet diffusion flames as a hydrodynamic global mode. The instability-driving interactions of the buoyancy force with the density differences induced by the chemical heat release are described in the infinitely fast reaction limit for unity Lewis numbers of the reactants. The analysis determines the critical conditions at the onset of the linear global instability as well as the Strouhal number of the associated oscillations in terms of the governing parameters of the problem. Marginal instability boundaries are delineated in the Froude number/Reynolds number plane for different fuel jet dilutions. The results of the global stability analysis are compared with direct numerical simulations of time-dependent axisymmetric jet flames and also with results of a local spatio-temporal stability analysis.Norbert Peters pointed out the need for the present analysis in his seminal paper with John Buckmaster published thirty years ago (Buckmaster & Peters 1986). It is with great sorrow that we received the news of his passing last year. This paper is devoted to his memory in gratitude for his many outstanding contributions to Combustion Science.
The constructive comments of one anonymous referee have led to substantial improvements of the paper and are gratefully acknowledged. This work was supported by the Spanish MCINN through project no. CSD2010-00010 and by the Spanish MINECO through project no. DPI2014-59292-C3-1-P
- …
