1,418 research outputs found
EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes
Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges
Water use efficiency as a means to assess forest carbon uptake for different management strategies
Photoionization in the time and frequency domain
Ultrafast processes in matter, such as the electron emission following light
absorption, can now be studied using ultrashort light pulses of attosecond
duration (s) in the extreme ultraviolet spectral range. The lack of
spectral resolution due to the use of short light pulses may raise serious
issues in the interpretation of the experimental results and the comparison
with detailed theoretical calculations. Here, we determine photoionization time
delays in neon atoms over a 40 eV energy range with an interferometric
technique combining high temporal and spectral resolution. We spectrally
disentangle direct ionization from ionization with shake up, where a second
electron is left in an excited state, thus obtaining excellent agreement with
theoretical calculations and thereby solving a puzzle raised by seven-year-old
measurements. Our experimental approach does not have conceptual limits,
allowing us to foresee, with the help of upcoming laser technology, ultra-high
resolution time-frequency studies from the visible to the x-ray range.Comment: 5 pages, 4 figure
Resonance structure in the Li^- photodetachment cross section
We report on the first observation of resonance structure in the total cross
section for the photodetachment of Li^-. The structure arises from the
autodetaching decay of doubly excited ^1P states of Li^- that are bound with
respect to the 3p state of the Li atom. Calculations have been performed for
both Li^- and H^- to assist in the identification of these resonances. The
lowest lying resonance is a symmetrically excited intrashell resonance. Higher
lying asymmetrically excited intershell states are observed which converge on
the Li(3p) limit.Comment: 4 pages, 2 figure, 19 references, RevTeX, figures in ep
Dielectronic Resonance Method for Measuring Isotope Shifts
Longstanding problems in the comparison of very accurate hyperfine-shift
measurements to theory were partly overcome by precise measurements on
few-electron highly-charged ions. Still the agreement between theory and
experiment is unsatisfactory. In this paper, we present a radically new way of
precisely measuring hyperfine shifts, and demonstrate its effectiveness in the
case of the hyperfine shift of and in
. It is based on the precise detection of dielectronic
resonances that occur in electron-ion recombination at very low energy. This
allows us to determine the hyperfine constant to around 0.6 meV accuracy which
is on the order of 10%
Water use efficiency as a measure to assess forest carbon uptake for different management strategies
g factor of Li-like ions with nonzero nuclear spin
The fully relativistic theory of the g factor of Li-like ions with nonzero
nuclear spin is considered for the (1s)^2 2s state. The magnetic-dipole
hyperfine-interaction correction to the atomic g factor is calculated including
the one-electron contributions as well as the interelectronic-interaction
effects of order 1/Z. This correction is combined with the
interelectronic-interaction, QED, nuclear recoil, and nuclear size corrections
to obtain high-precision theoretical values for the g factor of Li-like ions
with nonzero nuclear spin. The results can be used for a precise determination
of nuclear magnetic moments from g factor experiments.Comment: 20 pages, 5 figure
Two--Electron Atoms in Short Intense Laser Pulses
We discuss a method of solving the time dependent Schrodinger equation for
atoms with two active electrons in a strong laser field, which we used in a
previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to
calculate ionization, double excitation and harmonic generation in Helium by
short laser pulses. The method employs complex scaling and an expansion in an
explicitly correlated basis. Convergence of the calculations is documented and
error estimates are provided. The results for Helium at peak intensities up to
10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly
accurate calculations are presented for electron detachment and double
excitation of the negative hydrogen ion.Comment: 14 pages, including figure
- …
