2,748 research outputs found

    The Gamma Ray Pulsar Population

    Get PDF
    We apply a likelihood analysis to pulsar detections, pulsar upper limits, and diffuse background measurements from the OSSE and EGRET instruments on the Compton Gamma Ray Observatory to constrain the luminosity law for gamma-ray pulsars and some properties of the gamma-ray pulsar population. We find that the dependence of luminosity on spin period and dipole magnetic field is much steeper at OSSE than at EGRET energies (50-200 keV and >100 MeV, respectively), suggesting that different emission mechanisms are responsible for low- and high-energy gamma-ray emission. Incorporating a spin-down model and assuming a pulsar spatial distribution, we estimate the fraction of the Galactic gamma-ray background due to unidentified pulsars and find that pulsars may be an important component of the OSSE diffuse flux, but are most likely not important at EGRET energies. Using measurements of the diffuse background flux from these instruments, we are able to place constraints on the braking index, initial spin period, and magnetic field of the Galactic pulsar population. We are also able to constrain the pulsar birthrate to be between 1/(25 yr) and 1/(500 yr). Our results are based on a large gamma-ray beam, but they do not scale in a simple way with beam size. With our assumed beam size, the implied gamma-ray efficiency for the EGRET detections is no more than 20%. We estimate that about 20 of the 169 unidentified EGRET sources are probably gamma-ray pulsars. We use our model to predict the pulsar population that will be seen by future gamma-ray instruments and estimate that GLAST will detect roughly 750 gamma-ray pulsars as steady sources, only 120 of which are currently known radio pulsars.Comment: 32 pages, including figures. submitted to Ap

    Absolute Timing of the Crab Pulsar with RXTE

    Full text link
    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 us. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.0102+/-0.0012 period in phase, or 344+/-40 us in time. The error estimate is dominated by a systematic error of 40 us in the radio data, arising from uncertainties in the variable amount of pulse delay due to interstellar scattering and instrumental calibration. The statistical error is 0.00015 period, or 5 us. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001+/-0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses may be constant in phase (rotational) or constant in time (linear pathlength). We are not (yet) able to distinguish between these two interpretations.Comment: 11 pages, 2 figure

    The geometry of the double-pulsar system J0737-3039 from systematic intensity variations

    Full text link
    The recent discovery of J0737-3039A & B-two pulsars in a highly relativistic orbit around one another - offers an unprecedented opportunity to study the elusive physics of pulsar radio emission. The system contains a rapidly rotating pulsar with a spin period of 22.7 ms and a slow companion with a spin period of 2.77 s, hereafter referred to as 'A' and 'B', respectively. A unique property of the system is that the pulsed radio flux from B increases systematically by almost two orders-of-magnitude during two short portions of each orbit. Here, we describe a geometrical model of the system that simultaneously explains the intensity variations of B and makes definitive and testable predictions for the future evolution of the emission properties of both stars. Our model assumes that B's pulsed radio flux increases when illuminated by emission from A. This model provides constraints on the spin axis orientation and emission geometry of A and predicts that its pulse profile will evolve considerably over the next several years due to geodetic precession until it disappears entirely in 15-20 years

    Are We Seeing Magnetic Axis Reorientation in the Crab and Vela Pulsars?

    Get PDF
    Variation in the angle α\alpha between a pulsar's rotational and magnetic axes would change the torque and spin-down rate. We show that sudden increases in α\alpha, coincident with glitches, could be responsible for the persistent increases in spin-down rate that follow glitches in the Crab pulsar. Moreover, changes in α\alpha at a rate similar to that inferred for the Crab pulsar account naturally for the very low braking index of the Vela pulsar. If α\alpha increases with time, all pulsar ages obtained from the conventional braking model are underestimates. Decoupling of the neutron star liquid interior from the external torque cannot account for Vela's low braking index. Variations in the Crab's pulse profile due to changes in α\alpha might be measurable.Comment: 14 pages and one figure, Latex, uses aasms4.sty. Accepted to ApJ Letter

    Bumpy Spin-Down of Anomalous X-Ray Pulsars: The Link with Magnetars

    Get PDF
    The two anomalous X-ray pulsars (AXPs) with well-sampled timing histories, 1E 1048.1-5937 and 1E 2259+586, are known to spin down irregularly, with `bumps' superimposed on an overall linear trend. Here we show that if AXPs are non-accreting magnetars, i.e. isolated neutron stars with surface magnetic fields B_0 > 10^{10} T, then they spin down electromagnetically in exactly the manner observed, due to an effect called `radiative precession'. Internal hydromagnetic stresses deform the star, creating a fractional difference epsilon=(I_3-I_1)/I_1 ~ 10^{-8} between the principal moments of inertia I_1 and I_3; the resulting Eulerian precession couples to an oscillating component of the electromagnetic torque associated with the near-zone radiation fields, and the star executes an anharmonic wobble with period tau_pr ~ 2 pi / epsilon Omega(t) ~ 10 yr, where Omega(t) is the rotation frequency as a function of time t. We solve Euler's equations for a biaxial magnet rotating in vacuo; show that the computed Omega(t) matches the measured timing histories of 1E 1048.1-5937 and 1E 2259+586; predict Omega(t) for the next 20 years for both objects; predict a statistical relation between and tau_pr, to be tested as the population of known AXPs grows; and hypothesize that radiative precession will be observed in future X-ray timing of soft gamma-ray repeaters (SGRs).Comment: 9 pages, 2 figures, to be published in The Astrophysical Journal Letter

    Observations of microglitches in HartRAO radio pulsars

    Full text link
    A detailed observation of microglitch phenomenon in relatively slow radio pulsars is presented. Our analyses for these small amplitude jumps in pulse rotation frequency (ν\nu) and/or spin down rate (ν˙\dot{\nu}) combine the traditional manual detection method (which hinges on careful visual inspections of the residuals of pulse phase residuals) and a new, and perhaps more objective, automated search technique (which exploits the power of the computer, rather than the eyes, for resolving discrete events in pulsar spin parameters). The results of the analyses of a sample of 26 radio pulsars reveal that: (i) only 20 pulsars exhibit significant fluctuations in their arrival times to be considered suitable for meaningful microglitch analyses; (ii) a phenomenal 299 microglitch events were identified in ν\nu and/or ν˙\dot{\nu}: 266 of these events were found to be simultaneously significant in ν\nu and ν˙\dot{\nu}, while 19 and 14 were noticeable only in ν\nu and ν˙\dot{\nu}, respectively; (iii) irrespective of sign, the microglitches have fractional sizes which cover about 3 orders of magnitude in ν\nu and ν˙\dot{\nu} (1011<Δν/ν<2.0×10810^{-11} < |\Delta{\nu}/\nu| < 2.0\times10^{-8} and 5.0×105<Δν˙/ν˙<2.0×1025.0\times10^{-5} < |\Delta{\dot{\nu}}/\dot{\nu}| < 2.0\times10^{-2}) with median values as 0.78×1090.78\times10^{-9} and 0.36×1030.36\times10^{-3}, respectively.Comment: 12 pages, 3 figures, 2 Tables. Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Searching for sub-millisecond pulsars from highly polarized radio sources

    Full text link
    Pulsars are among the most highly polarized sources in the universe. The NVSS has catalogued 2 million radio sources with linear polarization measurements, from which we have selected 253 sources, with polarization percentage greater than 25%, as targets for pulsar searches. We believe that such a sample is not biased by selection effects against ultra-short spin or orbit periods. Using the Parkes 64m telescope, we conducted searches with sample intervals of 0.05 ms and 0.08 ms, sensitive to submillisecond pulsars. Unfortunately we did not find any new pulsars.Comment: 2 pages 1 figure. To appear in "Young Neutron Stars and Their Environments" (IAU Symposium 218, ASP Conference Proceedings), eds F. Camilo and B. M. Gaensle

    An empirical analysis of factors affecting the productivity of livestock in southern Botswana

    Get PDF
    This study attempts to identify factors responsible for differences in the productivity of cattle managed by private and communal livestock farmers in the southern region of Botswana during 1999/2000. Sample survey data are used to estimate the parameters of a block recursive regression model. Some of the equations postulated in the model are estimated with two-stage least squares (2SLS) to account for likely correlation between endogenous explanatory variables and the error term. The results show that (a) respondents with secure land tenure (private farms) and larger herds use more agricultural credit than do those who rely on open access communal grazing to raise cattle; (b) secure tenure and higher levels of liquidity from long-term credit and off-farm wage remittances promote investment in fixed improvements to land; (c) liquidity from short-term credit and wage remittances supports expenditure on operating inputs; and (d) herd productivity increases with greater investment in operating inputs and fixed improvements, and is therefore positively (but indirectly) influenced by secure land tenure. It can be inferred that government should (a) uphold private property rights to land where they already exist; (b) privatise open access grazing to individual owner-operators where this is politically, socially and economically feasible; and (c) where privatisation to individuals is not feasible, government should encourage users to convert the grazing into common property by subsidising the transaction costs of defining user groups and the boundaries of their resources, and of negotiating and enforcing rules limiting individual use of common property. This first-step in a gradual shift towards private property might be followed by a conversion of user-groups into non-user groups organised along the lines of investor-owned firms where members exchange use rights for benefits rights.Productivity Analysis,

    Revised Pulsar Spindown

    Full text link
    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-Pdot diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n ~ 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.Comment: 8 pages, 7 figures; accepted to Ap
    corecore