310 research outputs found
Anticommutativity Equation in Topological Quantum Mechanics
We consider topological quantum mechanics as an example of topological field
theory and show that its special properties lead to numerous interesting
relations for topological corellators in this theory. We prove that the
generating function for thus corellators satisfies the
anticommutativity equation . We show that the
commutativity equation could be considered as a special case of the
anticommutativity equation.Comment: 6 pages, no figures, Late
Drift of domain walls in a harmonic magnetic field
It is shown that a two-step form of the dynamic magnetization curve (and the hysteresis loop) established for a multiaxial ferrite-garnet wafer with a low quality factor (Q < 1) and considerable anisotropy in the plane (K p /K u = 14) in the frequency range of 25-1000 Hz is explained by the reconstruction of the dynamic domain structure, particularly by the established features of the drift of domain boundaries in the harmonic magnetic field. © 2013 Allerton Press, Inc
Fluid Super-Dynamics from Black Hole Superpartners
Recently the Navier-Stokes equations have been derived from the duality with
the black branes in AdS_5. The zero modes of black branes are reinterpreted as
dynamical degrees of freedom of a conformal fluid on the boundary of AdS_5.
Here, we derive the corrections to the Navier-Stokes equations due to fermionic
zero modes of the black branes. We study only the contributions due to
bilinears in the fermionic zero modes in the first order of the parameter
expansion. The need of a superextension of the fluid dynamics is a consequence
of the full AdS/CFT correspondence and yet to be investigated.Comment: 15 pages, LaTex2
Casimir Energy of the Universe and the Dark Energy Problem
We regard the Casimir energy of the universe as the main contribution to the
cosmological constant. Using 5 dimensional models of the universe, the flat
model and the warped one, we calculate Casimir energy. Introducing the new
regularization, called {\it sphere lattice regularization}, we solve the
divergence problem. The regularization utilizes the closed-string
configuration. We consider 4 different approaches: 1) restriction of the
integral region (Randall-Schwartz), 2) method of 1) using the minimal area
surfaces, 3) introducing the weight function, 4) {\it generalized
path-integral}. We claim the 5 dimensional field theories are quantized
properly and all divergences are renormalized. At present, it is explicitly
demonstrated in the numerical way, not in the analytical way. The
renormalization-group function (\be-function) is explicitly obtained. The
renormalization-group flow of the cosmological constant is concretely obtained.Comment: 12 pages, 13 figures, Proceedings of DSU2011(2011.9.26-30,Beijin
On Pure Spinor Superfield Formalism
We show that a certain superfield formalism can be used to find an off-shell
supersymmetric description for some supersymmetric field theories where
conventional superfield formalism does not work. This "new" formalism contains
even auxiliary variables in addition to conventional odd super-coordinates. The
idea of this construction is similar to the pure spinor formalism developed by
N.Berkovits. It is demonstrated that using this formalism it is possible to
prove that the certain Chern-Simons-like (Witten's OSFT-like) theory can be
considered as an off-shell version for some on-shell supersymmetric field
theories. We use the simplest non-trivial model found in [2] to illustrate the
power of this pure spinor superfield formalism. Then we redo all the
calculations for the case of 10-dimensional Super-Yang-Mills theory. The
construction of off-shell description for this theory is more subtle in
comparison with the model of [2] and requires additional Z_2 projection. We
discover experimentally (through a direct explicit calculation) a non-trivial
Z_2 duality at the level of Feynman diagrams. The nature of this duality
requires a better investigation
Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights
We study a model of non-intersecting squared Bessel processes in the
confluent case: all paths start at time at the same positive value , remain positive, and are conditioned to end at time at . In
the limit , after appropriate rescaling, the paths fill out a
region in the -plane that we describe explicitly. In particular, the paths
initially stay away from the hard edge at , but at a certain critical
time the smallest paths hit the hard edge and from then on are stuck to
it. For we obtain the usual scaling limits from random matrix
theory, namely the sine, Airy, and Bessel kernels. A key fact is that the
positions of the paths at any time constitute a multiple orthogonal
polynomial ensemble, corresponding to a system of two modified Bessel-type
weights. As a consequence, there is a matrix valued
Riemann-Hilbert problem characterizing this model, that we analyze in the large
limit using the Deift-Zhou steepest descent method. There are some novel
ingredients in the Riemann-Hilbert analysis that are of independent interest.Comment: 59 pages, 11 figure
Safe and complete contig assembly via omnitigs
Contig assembly is the first stage that most assemblers solve when
reconstructing a genome from a set of reads. Its output consists of contigs --
a set of strings that are promised to appear in any genome that could have
generated the reads. From the introduction of contigs 20 years ago, assemblers
have tried to obtain longer and longer contigs, but the following question was
never solved: given a genome graph (e.g. a de Bruijn, or a string graph),
what are all the strings that can be safely reported from as contigs? In
this paper we finally answer this question, and also give a polynomial time
algorithm to find them. Our experiments show that these strings, which we call
omnitigs, are 66% to 82% longer on average than the popular unitigs, and 29% of
dbSNP locations have more neighbors in omnitigs than in unitigs.Comment: Full version of the paper in the proceedings of RECOMB 201
Deconstructing holographic liquids
We argue that there exist simple effective field theories describing the
long-distance dynamics of holographic liquids. The degrees of freedom
responsible for the transport of charge and energy-momentum are Goldstone
modes. These modes are coupled to a strongly coupled infrared sector through
emergent gauge and gravitational fields. The IR degrees of freedom are
described holographically by the near-horizon part of the metric, while the
Goldstone bosons are described by a field-theoretical Lagrangian. In the cases
where the holographic dual involves a black hole, this picture allows for a
direct connection between the holographic prescription where currents live on
the boundary, and the membrane paradigm where currents live on the horizon. The
zero-temperature sound mode in the D3-D7 system is also re-analyzed and
re-interpreted within this formalism.Comment: 21 pages, 2 figure
- …
