1,099 research outputs found

    Properties of isocalar-pair condensates

    Get PDF
    It is pointed out that the ground state of n neutrons and n protons in a single-j shell, interacting through an isoscalar (T=0) pairing force, is not paired, J=0, but rather spin-aligned, J=n. This observation is explained in the context of a model of isoscalar P (J=1) pairs, which is mapped onto a system of p bosons, leading to an approximate analytic solution of the isoscalar-pairing limit in jj coupling.Comment: 7 pages, 3 figures, 1 tabl

    Microscopic structure of fundamental excitations in N=Z nuclei

    Get PDF
    Excitation energies of the TT=1 states in even-even as well as TT=0 and TT=1 states in odd-odd NN=ZZ nuclei are calculated within the mean-field approach. It is shown that the underlying structure of these states can be determined in a consistent manner only when both isoscalar and isovector pairing collectivity as well as isospin projection, treated within the iso-cranking approximation, are taken into account. In particular, in odd-odd NN=ZZ nuclei, the interplay between quasiparticle excitations (relevant for the case of TT=0 states) and iso-rotations (relevant for the case of TT=1 states) explains the near-degeneracy of these fundamental excitations.Comment: 4 pages, 4 figure

    A Composite Chiral Pair of Rotational Bands in the odd-A Nucleus 135Nd

    Get PDF
    High-spin states in 135Nd were populated with the 110Pd(30Si,5n)135Nd reaction at a 30Si bombarding energy of 133 MeV. Two Delta(I)=1 bands with close excitation energies and the same parity were observed. These bands are directly linked by Delta(I)=1 and Delta(I)=2 transitions. The chiral nature of these two bands is confirmed by comparison with three-dimensional tilted axis cranking calculations. This is the first observation of a three-quasiparticle chiral structure and established the primarily geometric nature of this phenomenon.Comment: 10 pages, 5 figures (1 in color), 1 table, submitted to Physics Review Letters, written in REVTEX4 forma

    Toward a complete theory for predicting inclusive deuteron breakup away from stability

    Full text link
    We present an account of the current status of the theoretical treatment of inclusive (d,p)(d,p) reactions in the breakup-fusion formalism, pointing to some applications and making the connection with current experimental capabilities. Three independent implementations of the reaction formalism have been recently developed, making use of different numerical strategies. The codes also originally relied on two different but equivalent representations, namely the prior (Udagawa-Tamura, UT) and the post (Ichimura-Austern-Vincent, IAV) representations. The different implementations have been benchmarked, and then applied to the Ca isotopic chain. The neutron-Ca propagator is described in the Dispersive Optical Model (DOM) framework, and the interplay between elastic breakup (EB) and non-elastic breakup (NEB) is studied for three Ca isotopes at two different bombarding energies. The accuracy of the description of different reaction observables is assessed by comparing with experimental data of (d,p)(d,p) on 40,48^{40,48}Ca. We discuss the predictions of the model for the extreme case of an isotope (60^{60}Ca) currently unavailable experimentally, though possibly available in future facilities (nominally within production reach at FRIB). We explore the use of (d,p)(d,p) reactions as surrogates for (n,γ)(n,\gamma) processes, by using the formalism to describe the compound nucleus formation in a (d,pγ)(d,p\gamma) reaction as a function of excitation energy, spin, and parity. The subsequent decay is then computed within a Hauser-Feshbach formalism. Comparisons between the (d,pγ)(d,p\gamma) and (n,γ)(n,\gamma) induced gamma decay spectra are discussed to inform efforts to infer neutron captures from (d,pγ)(d,p\gamma) reactions. Finally, we identify areas of opportunity for future developments, and discuss a possible path toward a predictive reaction theory

    Quasideuteron states with deformed core

    Get PDF
    The M1 transitions between low-lying T=1 and T=0 states in deformed odd-odd N=Z nuclei are analyzed in the frames of the rotor-plus-particle model. Using the representation of an explicit coupling of angular momenta we show that strong coupling of the quasideuteron configurations to the axially deformed core results in a distribution of the total 0+ --> 1+ strength among a few low-lying 1+ states. Simple analytical formulae for B(M1) values are derived. The realization of the M1 sum rule for the low-lying 1+,T=0 states is indicated. The calculated B(M1) values are found to be in good agreement with experimental data and reveal specific features of collectivity in odd-odd N=Z nuclei.Comment: 11 pages, 1 figure, LaTe

    Degeneracies when T=0 Two Body Matrix Elements are Set Equal to Zero and Regge's 6j Symmetry Relations

    Full text link
    The effects of setting all T=0 two body interaction matrix elements equal to a constant (or zero) in shell model calculations (designated as =0=0) are investigated. Despite the apparent severity of such a procedure, one gets fairly reasonable spectra. We find that using =0=0 in single j shell calculations degeneracies appear e.g. the I=1/2I={1/2} ^{-} and 13/2{13/2}^{-} states in 43^{43}Sc are at the same excitation energies; likewise the I=32+3_{2}^{+},72+7_{2}^{+},91+^{+}_{1} and 101+^{+}_{1} states in 44^{44}Ti. The above degeneracies involve the vanishing of certain 6j and 9j symbols. The symmetry relations of Regge are used to explain why these vanishings are not accidental. Thus for these states the actual deviation from degeneracy are good indicators of the effects of the T=0 matrix elements. A further indicator of the effects of the T=0 interaction in an even - even nucleus is to compare the energies of states with odd angular momentum with those that are even

    Orbifold projection in supersymmetric QCD at N_f\leq N_c

    Get PDF
    Supersymmetric orbifold projection of N=1 SQCD with relatively small number of flavors (not larger than the number of colors) is considered. The purpose is to check whether orbifolding commutes with the infrared limit. On the one hand, one considers the orbifold projection of SQCD and obtains the low-energy description of the resulting theory. On the other hand, one starts with the low-energy effective theory of the original SQCD, and only then perfoms orbifolding. It is shown that at finite N_c the two low-energy theories obtained in these ways are different. However, in the case of stabilized run-away vacuum these two theories are shown to coincide in the large N_c limit. In the case of quantum modified moduli space, topological solitons carrying baryonic charges are present in the orbifolded low-energy theory. These solitons may restore the correspondence between the two theories provided that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde
    corecore