50 research outputs found
CD147 mediates intrahepatic leukocyte aggregation and determines the extent of liver injury
Background: Chronic inflammation is the driver of liver injury and results in progressive fibrosis and eventual cirrhosis with consequences including both liver failure and liver cancer. We have previously described increased expression of the highly multifunctional glycoprotein CD147 in liver injury. This work describes a novel role of CD147 in liver inflammation and the importance of leukocyte aggregates in determining the extent of liver injury. Methods: Non-diseased, progressive injury, and cirrhotic liver from humans and mice were examined using a mAb targeting CD147. Inflammatory cell subsets were assessed by multiparameter flow cytometry. Results: In liver injury, we observe abundant, intrahepatic leukocyte clusters defined as ≥5 adjacent CD45+ cells which we have termed “leukocyte aggregates”. We have shown that these leukocyte aggregates have a significant effect in determining the extent of liver injury. If CD147 is blocked in vivo, these leukocyte aggregates diminish in size and number, together with a marked significant reduction in liver injury including fibrosis. This is accompanied by no change in overall intrahepatic leukocyte numbers. Further, blocking of aggregation formation occurs prior to an appreciable increase in inflammatory markers or fibrosis. Additionally, there were no observed, “off-target” or unpredicted effects in targeting CD147. Conclusion: CD147 mediates leukocyte aggregation which is associated with the development of liver injury. This is not a secondary effect, but a cause of injury as aggregate formation proceeds other markers of injury. Leukocyte aggregation has been previously described in inflammation dating back over many decades. Here we demonstrate that leukocyte aggregates determine the extent of liver injury
Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice
Background: Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. Methods: C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma.Results: Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic antioxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. Conclusions: The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations
Lipoic acid increases glutathione peroxidase, Na+, K+-ATPase and acetylcholinesterase activities in rat hippocampus after pilocarpine-induced seizures?
In the present study we investigated the effects of lipoic acid (LA) on acetylcholinesterase (AChE), glutathione peroxidase (GPx) and Na+, K+-ATPase activities in rat hippocampus during seizures. Wistar rats were treated with 0.9% saline (i.p., control group), lipoic acid (20 mg/kg, i.p., LA group), pilocarpine (400 mg/kg, i.p., P400 group), and the association of pilocarpine (400 mg/kg, i.p.) plus LA (20 mg/kg, i.p.), 30 min before of administration of P400 (LA plus P400 group). After the treatments all groups were observed for 1 h. In P400 group, there was a significant increase in GPx activity as well as a decrease in AChE and Na+, K+-ATPase activities after seizures. In turn, LA plus P400 abolished the appearance of seizures and reversed the decreased in AChE and Na+, K+-ATPase activities produced by seizures, when compared to the P400 seizing group. The results from the present study demonstrate that preadministration of LA abolished seizure episodes induced by pilocarpine in rat, probably by increasing AChE and Na+, K+-ATPase activities in rat hippocampus.No presente estudo nós investigamos os efeitos do ácido lipóico (AL) sobre as atividades da acetilcolinesterase (AChE), da glutationa peroxidase (GPx) e da Na+, K+-ATPase no hipocampo de ratos durante crises convulsivas. Ratos Wistar foram tratados com solução salina a 0,9% (i.p., grupo controle), ácido lipóico (20 mg/kg, i.p., grupo AL), pilocarpina (400 mg/kg, i.p., grupo P400), e a associação de AL (20 mg/kg, i.p.) com a pilocarpina (400 mg/kg, i.p.), 30 min antes da administração de pilocarpina (grupo AL + P400). Após os tratamentos todos os grupos foram observados durante 1 h. No grupo P400, houve um aumento significativo na atividade da GPx, assim como uma diminuição das atividades da AChE e Na+, K+-ATPase. Por sua vez, o pré-tratamento com AL aboliu o aparecimento de convulsões e reverteu a diminuição das atividades da AChE e da Na+, K+-ATPase causadas pelas convulsões, quando comparada com o grupo P400 sozinho. Os resultados do estudo demonstram que o pré-tratamento com AL aboliu os episódios de convulsão induzido pela pilocarpina em ratos, provavelmente por meio do aumento das atividades das enzimas AChE e Na+, K+-ATPase no hipocampo de ratos
Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging
Toll-like receptor signaling and stages of addiction
Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction
Effets de l'ilomédine sur les marqueurs endothéliaux solubles (sICAM, sVCAM, E Selectine) et de l'endothéline 1 au cours de la sclérodermie systémique
PARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF
Novel Aspects of the Liver Microenvironment in Hepatocellular Carcinoma Pathogenesis and Development
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer that is derived from hepatocytes and is characterised by high mortality rate and poor prognosis. While HCC is driven by cumulative changes in the hepatocyte genome, it is increasingly recognised that the liver microenvironment plays a pivotal role in HCC propensity, progression and treatment response. The microenvironmental stimuli that have been recognised as being involved in HCC pathogenesis are diverse and include intrahepatic cell subpopulations, such as immune and stellate cells, pathogens, such as hepatitis viruses, and non-cellular factors, such as abnormal extracellular matrix (ECM) and tissue hypoxia. Recently, a number of novel environmental influences have been shown to have an equally dramatic, but previously unrecognized, role in HCC progression. Novel aspects, including diet, gastrointestinal tract (GIT) microflora and circulating microvesicles, are now being recognized as increasingly important in HCC pathogenesis. This review will outline aspects of the HCC microenvironment, including the potential role of GIT microflora and microvesicles, in providing new insights into tumourigenesis and identifying potential novel targets in the treatment of HCC
Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that destroys patient memory and cognition, communication ability with the social environment and the ability to carry out daily activities. Despite extensive research into the pathogenesis of AD, a neuroprotective treatment - particularly for the early stages of disease - remains unavailable for clinical use. In this review, we advance the suggestion that lipoic acid (LA) may fulfil this therapeutic need. A naturally occurring cofactor for the mitochondrial enzymes pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, LA has been shown to have a variety of properties which can interfere with the pathogenesis or progression of AD. For example, LA increases acetylcholine (ACh) production by activation of choline acetyltransferase and increases glucose uptake, thus supplying more acetyl-CoA for the production of ACh. LA chelates redox-active transition metals, thus inhibiting the formation of hydroxyl radicals and also scavenges reactive oxygen species (ROS), thereby increasing the levels of reduced glutathione. In addition, LA down-regulates the expression of redox-sensitive pro-inflammatory proteins including TNF and inducible nitric oxide synthase. Furthermore, LA can scavenge lipid peroxidation products such as hydroxynonenal and acrolein. In human plasma, LA exists in an equilibrium of free and plasma protein bound form. Up to 150 muM, it is bound completely, most likely binding to high affinity fatty acid sites on human serum albumin, suggesting that one large dose rather than continuous low doses (as provided by "slow release" LA) will be beneficial for delivery of LA to the brain. Evidence for a clinical benefit for LA in dementia is yet limited. There are only two published studies, in which 600 mg LA was given daily to 43 patients with AD (receiving a standard treatment with choline-esterase inhibitors) in an open-label study over an observation period of up to 48 months. Whereas the improvement in patients with moderate dementia was not significant, the disease progressed extremely slowly (change in ADAScog: 1.2 points=year, MMSE: -0.6 points=year) in patients with mild dementia (ADAScog<15). Data from cell culture and animal models suggest that LA could be combined with nutraceuticals such as curcumin, (-)-epigallocatechin gallate (from green tea) and docosahexaenoic acid (from fish oil) to synergistically decrease oxidative stress, inflammation, Abeta levels and Abeta plaque load and thus provide a combined benefit in the treatment of AD
CD147 mediates intrahepatic leukocyte aggregation and determines the extent of liver injury.
BACKGROUND: Chronic inflammation is the driver of liver injury and results in progressive fibrosis and eventual cirrhosis with consequences including both liver failure and liver cancer. We have previously described increased expression of the highly multifunctional glycoprotein CD147 in liver injury. This work describes a novel role of CD147 in liver inflammation and the importance of leukocyte aggregates in determining the extent of liver injury. METHODS: Non-diseased, progressive injury, and cirrhotic liver from humans and mice were examined using a mAb targeting CD147. Inflammatory cell subsets were assessed by multiparameter flow cytometry. RESULTS: In liver injury, we observe abundant, intrahepatic leukocyte clusters defined as ≥5 adjacent CD45+ cells which we have termed "leukocyte aggregates". We have shown that these leukocyte aggregates have a significant effect in determining the extent of liver injury. If CD147 is blocked in vivo, these leukocyte aggregates diminish in size and number, together with a marked significant reduction in liver injury including fibrosis. This is accompanied by no change in overall intrahepatic leukocyte numbers. Further, blocking of aggregation formation occurs prior to an appreciable increase in inflammatory markers or fibrosis. Additionally, there were no observed, "off-target" or unpredicted effects in targeting CD147. CONCLUSION: CD147 mediates leukocyte aggregation which is associated with the development of liver injury. This is not a secondary effect, but a cause of injury as aggregate formation proceeds other markers of injury. Leukocyte aggregation has been previously described in inflammation dating back over many decades. Here we demonstrate that leukocyte aggregates determine the extent of liver injury
