220 research outputs found

    Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries

    Get PDF
    One of the most exciting areas in lithium ion batteries is engineering structured silicon anodes. These new materials promise to lead the next generation of batteries with significantly higher reversible charge capacity than current technologies. One drawback of these materials is that their production involves costly processing steps, limiting their application in commercial lithium ion batteries. In this report we present an inexpensive method for synthesizing macroporous silicon particulates (MPSPs). After being mixed with polyacrylonitrile (PAN) and pyrolyzed, MPSPs can alloy with lithium, resulting in capacities of 1000 mAhg−1 for over 600+ cycles. These sponge-like MPSPs with pyrolyzed PAN (PPAN) can accommodate the large volume expansion associated with silicon lithiation. This performance combined with low cost processing yields a competitive anode material that will have an immediate and direct application in lithium ion batteries

    Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage

    Get PDF
    A fast-charging battery that supplies maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge???discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Here, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (<1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by the simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. This sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate with a high energy density beyond those of a commercial standard anode

    Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents

    Get PDF
    Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high specific capacity to compensate the first-cycle capacity loss. These nanoparticles are produced via a one-step thermal alloying process. LixSi-Li2O core-shell nanoparticles are processible in a slurry and exhibit high capacity under dry-air conditions with the protection of a Li2O passivation shell, indicating that these nanoparticles are potentially compatible with industrial battery fabrication processes. Both Si and graphite anodes are successfully prelithiated with these nanoparticles to achieve high first-cycle Coulombic efficiencies of 94% to 4100%. The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries.open6

    High capacity silicon anodes enabled by MXene viscous aqueous ink

    Get PDF
    The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-performance active material would maximize this parameter. However, above a critical thickness, solution-processed films typically encounter electrical/mechanical problems, limiting the achievable areal capacity and rate performance as a result. Herein, we show that two-dimensional titanium carbide or carbonitride nanosheets, known as MXenes, can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives. The nanosheets form a continuous metallic network, enable fast charge transport and provide good mechanical reinforcement for the thick electrode (up to 450 µm). Consequently, very high areal capacity anodes (up to 23.3 mAh cm−2) have been demonstrated

    Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites

    Get PDF
    We demonstrate synthesis and electrochemical performance of polymer-derived silicon oxycarbide-carbon nanotube (SiOC-CNT) composites as a stable lithium intercalation material for secondary battery applications. Composite synthesis was achieved through controlled thermal decomposition of 1,3,5,7-tetramethyl 1,3,5,7-tetravinyl cyclotetrasiloxane (TTCS) precursor on carbon nanotubes surfaces that resulted in formation of shell/core type ceramic SiOC-CNT architecture. Li-ion battery anode (prepared at a loading of~ 1.0 mg cmˉ²) showed stable charge capacity of 686 mAh gˉ¹ even after 40 cycles. The average coulombic efficiency (excluding the first cycle loss) was 99.6 %. Further, the post electrochemical imaging of the dissembled cells showed no apparent damage to the anode surface, highlighting improved chemical and mechanical stability of these composites. Similar trend was observed in the rate capability tests, where the SiOC-CNT anode (with 5 wt.% loading in TTCS) again showed stable performance, completely recovering the first cycle capacity of ~ 750 mAh gˉ¹ when the current density was brought back to 50 mA gˉ¹ after cycling at higher current densities

    Erratum: High-performance lithium-ion anodes using a hierarchical bottom-up approach

    Full text link

    Mixed Metal Difluorides as High Capacity Conversion-Type Cathodes: Impact of Composition on Stability and Performance

    No full text
    With the most recent development of ultrahigh capacity anodes, such as Li- or Si-based anodes, metal fluorides hold promise as complementary high-capacity conversion cathode materials for next-generation energy storage devices. Despite their higher theoretical energy density compared to cells with sulfur cathodes, these materials have received dramatically less attention and little is understood about the origins of their electrochemical behavior. Here, the successful methodology to produce highly uniform size-controlled mixed metal difluoride nanocomposites is reported. It is discovered that such materials undergo reduction in a single step with a reduction potential intermediate to those for the corresponding single-metal difluorides and that a solid solution is reformed upon charging, which is advantageous for practical applications. For the first time the progressive formation of metal trifluorides upon repeated cycling of difluorides is reported. Systematic electrochemical measurements in combination with postmortem analyses lead to the conclusion that the cathode stability strongly depends on the ability to prevent formation and growth of a resistive cathode solid electrolyte interphase, which, in turn, strongly depends on the metal composition. This methodology and new findings will help to elucidate a path to developing metal fluoride?based commercial Li-ion batteries and provide guidelines for material selection. ? 2018 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimD.G. and Q.H. contributed equally to this work. This work was funded in part by a grant from the Qatar National Research Fund under its National Priorities Research Program award number NPRP7-567-2-216. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund. The authors also wish to acknowledge fellowship support of Qiao Huang by the China Scholarship Council

    High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach

    No full text
    Si-based Li-ion battery anodes have recently received great attention, as they offer specific capacity an order of magnitude beyond that of conventional graphite. The applications of this transformative technology require synthesis routes capable of producing safe and easy-to-handle anode particles with low volume changes and stable performance during battery operation. Herein, we report a large-scale hierarchical bottom-up assembly route for the formation of Si on the nanoscale—containing rigid and robust spheres with irregular channels for rapid access of Li ions into the particle bulk. Large Si volume changes on Li insertion and extraction are accommodated by the particle’s internal porosity. Reversible capacities over five times higher than that of the state-of-the-art anodes (1,950 mA h g−1) and stable performance are attained. The synthesis process is simple, low-cost, safe and broadly applicable, providing new avenues for the rational engineering of electrode materials with enhanced conductivity and power
    corecore