341 research outputs found

    A diode device combining lateral field-effect transport and vertical tunneling in a multi-quantum-well heterostructure

    Get PDF
    The authors discuss an electronic device with asymmetric contacts to a InGaAs-InP multilayer heterostructure. Current enters via an alloyed ohmic contact into the quantum wells (QWs) and flows laterally along capacitively coupled channels. It leaves via tunneling between the layers and through a forward-biased surface Schottky contact. A step-like I-V dependence is observed and interpreted by a model calculation

    A Pixel Vertex Tracker for the TESLA Detector

    Get PDF
    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presentedComment: 20 pages, 11 figure

    High resolution pixel detectors for e+e- linear colliders

    Get PDF
    The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hybrid Pixel Sensors already used in high energy physics experiments and a new detector concept based on the monolithic CMOS sensors.Comment: 8 pages, to appear on the Proceedings of the International Workshop on Linear Colliders LCWS99, Sitges (Spain), April 28 - May 5, 199

    Characterisation of Hybrid Pixel Detectors with capacitive charge division

    Get PDF
    In order to fully exploit the physics potential of the future high energy e+ e- linear collider, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells between the readout nodes has been developed to improve the single point resolution. The results of the characterisation of the first processed prototypes are reported.Comment: 5 pages, 2 figures, presented at LCWS2000, Linear Collider Workshop, October 24-28 2000, Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A. Proceedings to be published by the American Institute of Physic

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199

    Understanding mechanisms of asphaltene adsorption from organic solvent on mica

    Get PDF
    The adsorption process of asphaltene onto molecularly smooth mica surfaces from toluene solutions of various concentrations (0.01-1 wt %) was studied using a surface forces apparatus (SFA). Adsorption of asphaltenes onto mica was found to be highly dependent on adsorption time and asphaltene concentration of the solution. The adsorption of asphaltenes led to an attractive bridging force between the mica surfaces in asphaltene solution. The adsorption process was identified as being controlled by the diffusion of asphaltenes from the bulk solution to the mica surface with a diffusion coefficient on the order of 10-10 m2/s at room temperature, depending on the asphaltene bulk concentration. This diffusion coefficient corresponds to a hydrodynamic molecular radius of approximately 0.5 nm, indicating that asphaltene diffuses to mica surfaces as individual molecules at very low concentration (e.g., 0.01 wt %). Atomic force microscopy images of the adsorbed asphaltenes on mica support the results of the SFA force measurements. The results from the SFA force measurements provide valuable insights into the molecular interactions (e.g., steric repulsion and bridging attraction as a function of distance) of asphaltenes in organic media and hence their roles in crude oil and bitumen production

    V*-algebras, independence algebras and logic

    Get PDF
    Independence algebras were introduced in the early 1990s by specialists in semigroup theory, as a tool to explain similarities between the transformation monoid on a set and the endomorphism monoid of a vector space. It turned out that these algebras had already been defined and studied in the 1960s, under the name of v*-algebras, by specialists in universal algebra (and statistics). Our goal is to complete this picture by discussing how, during the middle period, independence algebras began to play a very important role in logic

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16, 1996 Binyanei haOoma, Jerusalem Iarael part 3(final part)

    Get PDF

    Correction

    Get PDF
    corecore