3,327 research outputs found

    Quantitative Version of the Oppenheim Conjecture for Inhomogeneous Quadratic Forms

    Full text link
    A quantitative version of the Oppenheim conjecture for inhomogeneous quadratic forms is proved. We also give an application to eigenvalue spacing on flat 2-tori with Aharonov-Bohm flux

    Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions

    Get PDF
    An analogue of the convergence part of the Khintchine-Groshev theorem, as well as its multiplicative version, is proved for nondegenerate smooth submanifolds in Rn\mathbb{R}^n. The proof combines methods from metric number theory with a new approach involving the geometry of lattices in Euclidean spaces.Comment: 27 page
    corecore