1,505 research outputs found

    Development of a Thermographic Imaging Technique for Simultaneous Interfacial Temperature and Velocity Measurements

    No full text
    An experimental technique, hereby referred to as ‘thermographic particle velocimetry’ (TPV) and capable of recovering twodimensional (2-D) surface temperature and velocity measurements at the interface of multiphase flows is presented. The proposed technique employs a single infrared (IR) imager and highly reflective, silver-coated particles, which when suspended near or at the interface, can be distinguished from the surrounding fluid due to their different emissivity. The development of TPV builds upon our previous IR imaging studies of heated liquid-film flows; yet, the same measurement principle can be applied for the recovery of 2-D temperature- and velocity-field information at the interface of any flow with a significant density gradient between two fluid phases. The image processing steps used to recover the temperature and velocity distributions from raw IR frames are demonstrated by application of TPV in a heated and stirred flow in an open container, and include the decomposition of each raw frame into separate thermal and particle frames, the application of perspective distortion corrections and spatial calibration, and the implementation of standard particle image velocimetry algorithms. Validation experiments dedicated to the measurement of interfacial temperature and velocity were also conducted, with deviations between the results generated from TPV and those from accompanying conventional techniques not exceeding the errors associated with the latter. Finally, the capabilities of the proposed technique are demonstrated by conducting temperature and velocity measurements at the gas-liquid interface of a wavy film flow downstream of a localised heater

    Working-Fluid replacement in supersonic organic Rankine Cycle Turbines

    Get PDF
    In this paper the effect of working-fluid replacement within an organic Rankine cycle turbine is investigated by evaluating the performance of two supersonic stators operating with different working fluids. After designing the two stators, intended for operation with R245fa and Toluene with stator exit absolute Mach numbers of 1.4 and 1.7 respectively, the performance of each stator is evaluated using ANSYS CFX. Based on the principle that the design of a given stator is dependent on the amount of flow turning, it is hypothesised that a stator’s design point can be scaled to alternative working fluids by conserving the Prandtl-Meyer function and the polytropic index within the nozzle. A scaling method is developed and further CFD simulations for the scaled operating points verify that the Mach number distributions within the stator, and the non-dimensional velocity triangles at the stator exit, remain unchanged. This confirms that the method developed can predict stator performance following a change in the working fluid. Finally, a study investigating the effect of working-fluid replacement on the thermodynamic cycle is completed. The results show that the same turbine could be used in different systems with power outputs varying between 17 and 112 kW, suggesting the potential of matching the same turbine to multiple heat sources by tailoring the working fluid selected. This further implies that the same turbine design could be deployed in different applications, thus leading to economy-of-scale improvements

    Self-similarity of solitary waves on inertia-dominated falling liquid films

    Get PDF
    We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20–120 and surface tension coefficients σ=0.0512–0.072Nm−1 on substrates with inclination angles β=19◦ − 90◦. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence

    Thermodynamic Losses in a Gas Spring: Comparison of Experimental and Numerical Results

    Get PDF
    Reciprocating-piston devices can be used as high-efficiency compressors and/or expanders. With an optimal valve design and by carefully adjusting valve timing, pressure losses during intake and exhaust can be largely reduced. The main loss mechanism in reciprocating devices is then the thermal irreversibility due to the unsteady heat transfer between the compressed/expanded gas and the surrounding cylinder walls. In this paper, pressure, volume and temperature measurements in a piston-cylinder crankshaft driven gas spring are compared to numerical results. The experimental apparatus experiences mass leakage while the CFD code predicts heat transfer in an ideal closed gas spring. Comparison of experimental and numerical results allows one to better understand the loss mechanisms in play. Heat and mass losses in the experiment are decoupled and the system losses are calculated over a range of frequencies. As expected, compression and expansion approach adiabatic processes for higher frequencies, resulting in higher efficiency. The objective of this study is to observe and explain the discrepancies obtained between the computational and experimental results and to propose further steps to improve the analysis of the loss mechanisms

    Potential of Organic Rankine Cycles (ORC) for waste heat recovery on an Electric Arc Furnace (EAF)

    Get PDF
    The organic Rankine cycle (ORC) is a mature technology to convert low temperature waste heat to electricity. While several energy intensive industries could benefit from the integration of an ORC, their adoption rate is rather low. One important reason is that the prospective end-users find it difficult to recognize and realise the possible energy savings. In more recent years, the electric arc furnaces (EAF) are considered as a major candidate for waste heat recovery. Therefore, in this work, the integration of an ORC coupled to a 100 MWe EAF is investigated. The effect of working with averaged heat profiles, a steam buffer and optimized ORC architectures is investigated. The results show that it is crucial to take into account the heat profile variations for the typical batch process of an EAF. An optimized subcritical ORC (SCORC) can generate an electricity output of 752 kWe with a steam buffer working at 25 bar. However, the use of a steam buffer also impacts the heat transfer to the ORC. A reduction up to 61.5% in net power output is possible due to the additional isothermal plateau of the steam
    corecore