122 research outputs found
Spin bipolaron in the framework of emery model for high-T(sub c) copper oxide superconductors
The high-T(sub c) oxide compounds discovered recently exhibit a number of interesting physical properties. Two-dimensional antiferromagnetic spin order has been observed in these materials at the oxygen deficiency. This fact can be explained by strong correlation of the spins, situated on Cu sites in the conducting planes of the oxide superconductors. The doping or the oxygen deficiency lead to the occurrence of holes, occupying the oxygen p-orbitals according to the Emery model. At the small hole concentration they can move along the antiferromagnetic lattice of spins, localized on Cu sites. Researchers consider the two holes situation and describe in what way their behavior depends on the antiferromagnetic exchange interation J. It is known that in the framework of Hubbard model with strong on-site Coulomb repulsion, a single hole can form a spin polaron of the large radius. It is reasonable to admit that two holes with parallel spins (triplet) form the spin bipolaron complex owing to the hole excitations' capability to polarize Cu spin surroundings. Such an excitation was considered in the phenomenological way. Here the problem is discussed on the basis of the microscopic approach in the framework of the variational principle. A special kind of wave function is used for such a purpose. The wave function is constructed by generalizing the trial functions proposed in over two holes excitation situation (triplet) and then the region of spin bipolaron existance in the framework of Emery model is studied. In this model the Hamiltonian can be easily rewritten by forming the oxygen states transforming as the irreducible representations of the group D(sub 4)
Fourier Transform on the Homogeneous Space of 3D Positions and Orientations for Exact Solutions to Linear PDEs
Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group
We present a neuro-mathematical model for geometrical optical illusions (GOIs), a class of illusory phenomena that consists in a mismatch of geometrical properties of the visual stimulus and its associated percept. They take place in the visual areas V1/V2 whose functional architecture have been modeled in previous works by Citti and Sarti as a Lie group equipped with a sub-Riemannian (SR) metric. Here we extend their model proposing that the metric responsible for the cortical connectivity is modulated by the modeled neuro-physiological response of simple cells to the visual stimulus, hence providing a more biologically plausible model that takes into account a presence of visual stimulus. Illusory contours in our model are described as geodesics in the new metric. The model is confirmed by numerical simulations, where we compute the geodesics via SR-Fast Marching
Structure of high-lying levels populated in the ⁹⁶Y → ⁹⁶Zr β decay
The nature of Jπ=1− levels of 96Zr below the β-decay Qβ value of 96Y has been investigated in high-resolution γ-ray spectroscopy following the β decay as well as in a campaign of inelastic photon scattering experiments. Branching ratios extracted from β decay allow the absolute E1 excitation strength to be determined for levels populated in both reactions. The combined data represents a comprehensive approach to the wavefunction of 1− levels below the Qβ value, which are investigated in the theoretical approach of the Quasiparticle Phonon Model. This study clarifies the nuclear structure properties associated with the enhanced population of high-lying levels in the 96Ygs β decay, one of the three most important contributors to the high-energy reactor antineutrino spectrum
MAGAL Constellation -- Using a Small Satellite Altimeter Constellation to Monitor Local and Regional Ocean and Inland Water Variations
Firm spin and parity assignments for high-lying, low-spin levels in stable Si isotopes
A natural silicon target was investigated in a natSi(γ, γ′) photon-scattering experiment with fully linearly-polarised, quasi-monochromatic γ rays in the entrance channel. The mean photon energies used were ⟨ Eγ⟩ = 9.33, 9.77, 10.17, 10.55, 10.93, and 11.37 MeV, and the relative energy spread (full width at half maximum) of the incident beam was ΔEγ/ ⟨ Eγ⟩ ≈ 3.5–4 %. The observed angular distributions for the ground-state decay allow firm spin and parity assignments for several levels of the stable even-even silicon isotopes
- …
