766 research outputs found
Spin-orbit coupled j=1/2 iridium moments on the geometrically frustrated fcc lattice
Motivated by experiments on the double perovskites La2ZnIrO6 and La2MgIrO6,
we study the magnetism of spin-orbit coupled j=1/2 iridium moments on the
three-dimensional, geometrically frustrated, face-centered cubic lattice. The
symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and
symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich
variety of orders, including collinear A-type antiferromagnetism, stripe order
with moments along the [111]-direction, and incommensurate non-coplanar
spirals, and we use Monte Carlo simulations to determine their magnetic
ordering temperatures. We argue that existing thermodynamic data on these
iridates underscores the presence of a dominant Kitaev exchange, and also
suggest a resolution to the puzzle of why La2ZnIrO6 exhibits `weak'
ferromagnetism, but La2MgIrO6 does not.Comment: 5 pages, 5 figs, significantly revised to address referee comments,
to appear in PRB Rapid Com
Определение красителей в жевательных конфетах методом горизонтального агарозного электрофореза
Medium-chain acyl-CoA dehydrogenase deficiency in gene-targeted mice
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid β-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD-/-) by gene targeting in embryonic stem (ES) cells. The MCAD-/- mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 °C with prior fasting. The sporadic cardiac lesions seen in MCAD-/- mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD -/- pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation. © 2005 Tolwani et al
Liver transplantation for glycogen storage disease types I, III, and IV
Glycogen storage disease (GSD) types I, III, and IV can be associated with severe liver disease. The possible development of hepatocellular carcinoma and/or hepatic failure make these GSDs potential candidates for liver transplantation. Early diagnosis and initiation of effective dietary therapy have dramatically improved the outcome of GSD type I by reducing the incidence of liver adenoma and renal insufficiency. Nine type I and 3 type III patients have received liver transplants because of poor metabolic control, multiple liver adenomas, or progressive liver failure. Metabolic abnormalities were corrected in all GSD type I and type III patients, while catch-up growth was reported only in two patients. Whether liver transplantation results in reversal and/or prevention of renal disease remains unclear. Neutropenia persisted in both GSDIb patients post liver transplantation necessitating continuous granulocyte colony stimulating factor treatment. Thirteen GSD type IV patients were liver transplanted because of progressive liver cirrhosis and failure. All but one patient have not had neuromuscular or cardiac complications during follow-up periods for as long as 13 years. Four have died within a week and 5 years after transplantation. Caution should be taken in selecting GSD type IV candidates for liver transplantation because of the variable phenotype, which may include life-limiting extrahepatic manifestations. It remains to be evaluated, whether a genotype-phenotype correlation exists for GSD type IV, which may aid in the decision making. Conclusion Liver transplantation should be considered for patients with glycogen storage disease who have developed liver malignancy or hepatic failure, and for type IV patients with the classical and progressive hepatic form
Documentation on key drivers and physiological tolerance limits for resident and invasive species:Report: BIO-C3 Deliverable, D1.2
Documentation on key drivers and physiological tolerance limits for resident and invasive species
Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions
Application of ergonomic guidelines during minimally invasive surgery: a questionnaire survey of 284 surgeons
Characterizing the genetic structure of introduced Nile tilapia (Oreochromis niloticus) strains in Tanzania using double digest RAD sequencing
Tilapia hatcheries in Tanzania rely heavily on importing germplasm. Nevertheless, the genetic structure of the imported stocks is poorly understood. In the current study, the level of genetic diversity and differentiation of eight populations of Nile tilapia (Oreochromis niloticus) strains imported in Tanzania was investigated. Four of the studied strains originated from Thailand, three from Uganda, and one from the Netherlands. Double digest restriction-site associated DNA sequencing (ddRAD-seq) was applied to identify and genotype single nucleotide polymorphisms (SNPs). In total, 2,214 SNPs passed all the quality control steps and were utilized for downstream analysis. Mean heterozygosity estimates were higher for the Thailand strains (Ho: 0.23) compared to the strains from Uganda (Ho: 0.12). Low genetic distance was observed amongst populations from the same geographic origin (Fst: 0.01 – 0.04). However, genetic distance between populations from different geographic origins was substantial (Fst: 0.24 – 0.44). Bayesian model-based clustering (STRUCTURE) and discriminant analysis of principal components (DAPC) grouped the studied animals into three distinct clusters. A cross-validation approach (where 25% of animals from each population were considered of unknown origin) was conducted in order to test the efficiency of the SNP dataset for identifying the population of origin. The cross-validation procedure was repeated 10 times resulting in approximately 97 % of the tested animals being allocated to the correct geographic population of origin. The breeding history and hatchery practices used to manage these stocks prior and after import appear to be the main factors for the genetic diversity observed in this study. Our study, will help inform hatchery stock management and future breeding programme designs in Tanzania
- …
