2,452 research outputs found
The Effects of Clumping and Substructure on ICM Mass Measurements
We examine an ensemble of 48 simulated clusters to determine the effects of
small-scale density fluctuations and large-scale substructure on X-ray
measurements of the intracluster medium (ICM) mass. We measure RMS density
fluctuations in the ICM which can be characterized by a mean mass-weighted
clumping factor C = /^2 between 1.3 and 1.4 within a density
contrast of 500 times the critical density. These fluctuations arise from the
cluster history of accretion shocks and major mergers, and their presence
enhances the cluster's luminosity relative to the smooth case. We expect,
therefore, that ICM mass measurements utilizing models which assume uniform
density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this
result by performing ICM mass measurements on X-ray images of the simulations
and finding the expected level of bias.
The varied cluster morphologies in our ensemble also allow us to investigate
the effects of departures from spherical symmetry on our measurements. We find
that the presence of large-scale substructure does not further bias the
resulting gas mass unless it is pronounced enough to produce a second peak in
the image of at least 1% the maximum surface brightness. We analyze the subset
of images with no secondary peaks and find a bias of 9% and a Gaussian random
error of 4% in the derived mass.Comment: To appear in ApJ
A General Framework for Sound and Complete Floyd-Hoare Logics
This paper presents an abstraction of Hoare logic to traced symmetric
monoidal categories, a very general framework for the theory of systems. Our
abstraction is based on a traced monoidal functor from an arbitrary traced
monoidal category into the category of pre-orders and monotone relations. We
give several examples of how our theory generalises usual Hoare logics (partial
correctness of while programs, partial correctness of pointer programs), and
provide some case studies on how it can be used to develop new Hoare logics
(run-time analysis of while programs and stream circuits).Comment: 27 page
Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks
By means of a Monte Carlo code that accounts for Compton scattering and
photoabsorption followed by recombination, we have investigated the radiation
transfer of Ly alpha, He alpha, and recombination continua photons of H- and
He-like C, N, O, and Ne produced in the photoionized atmosphere of a
relativistic black hole accretion disk. We find that photoelectric opacity
causes significant attenuation of photons with energies above the O VIII
K-edge; that the conversion efficiencies of these photons into lower-energy
lines and recombination continua are high; and that accounting for this
reprocessing significantly (by factors of 21% to 105%) increases the flux of
the Ly alpha and He alpha emission lines of H- and He-like C and O escaping the
disk atmosphere.Comment: 4 pages including 4 encapsulated postscript figures; LaTeX format,
uses aastex.cls and emulateapj5.sty; accepted on 2004 January 13 for
publication in The Astrophysical Journa
Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster's Dynamical State
We employ an ensemble of hydrodynamic cluster simulations to create spatially
and spectrally resolved images of quality comparable to Chandra's expected
performance. Emission from simulation mass elements is represented using the
XSPEC mekal program assuming 0.3 solar metallicity, and the resulting spectra
are fit with a single-temperature model. Despite significant departures from
isothermality in the cluster gas, single-temperature models produce acceptable
fits to 20,000 source photon spectra. The spectral fit temperature T_s is
generally lower than the mass weighted average temperature T_m due to the
influence of soft line emission from cooler gas being accreted as part of the
hierarchical clustering process. In a Chandra-like bandpass of 0.5 to 9.5 keV
we find a nearly uniform fractional bias of (T_m-T_s)/T_s = 20% with occasional
large deviations in smaller clusters. In the more traditional 2.0 to 9.5 keV
bandpass, the fractional deviation is scale-dependent and on average follows
the relation (T_m-T_s)/T_s = 0.2 log(T_m). This bias results in a spectral
mass-temperature relationship with slope about 1.6, intermediate between the
virial relation M ~ T_m^{3/2} and the observed relation M_{ICM} ~ T^2. Imaging
each cluster in the ensemble at 16 epochs in its evolutionary history, we
catalogue merger events with mass ratios exceeding 10% in order to investigate
the relationship between spectral temperature and proximity to a major merger
event. Clusters that are very cool relative to the mean mass-temperature
relationship lie preferentially close to a merger, suggesting a viable
observational method to cull a subset of dynamically young clusters from the
general population.Comment: 34 pages, including 2 tables and 14 figures (one in color). Compiled
using LaTeX 2.09 with graphics package and aaspp4 style. The simulated
spectral data files used in this paper are available for public consumption
at http://redshift.stanford.edu/bfm
The thermodynamics and roughening of solid-solid interfaces
The dynamics of sharp interfaces separating two non-hydrostatically stressed
solids is analyzed using the idea that the rate of mass transport across the
interface is proportional to the thermodynamic potential difference across the
interface. The solids are allowed to exchange mass by transforming one solid
into the other, thermodynamic relations for the transformation of a mass
element are derived and a linear stability analysis of the interface is carried
out. The stability is shown to depend on the order of the phase transition
occurring at the interface. Numerical simulations are performed in the
non-linear regime to investigate the evolution and roughening of the interface.
It is shown that even small contrasts in the referential densities of the
solids may lead to the formation of finger like structures aligned with the
principal direction of the far field stress.Comment: (24 pages, 8 figures; V2: added figures, text revisions
Scale Free Cluster Distributions from Conserving Merging-Fragmentation Processes
We propose a dynamical scheme for the combined processes of fragmentation and
merging as a model system for cluster dynamics in nature and society displaying
scale invariant properties. The clusters merge and fragment with rates
proportional to their sizes, conserving the total mass. The total number of
clusters grows continuously but the full time-dependent distribution can be
rescaled over at least 15 decades onto a universal curve which we derive
analytically. This curve includes a scale free solution with a scaling exponent
of -3/2 for the cluster sizes.Comment: 4 pages, 3 figure
Tip Splittings and Phase Transitions in the Dielectric Breakdown Model: Mapping to the DLA Model
We show that the fractal growth described by the dielectric breakdown model
exhibits a phase transition in the multifractal spectrum of the growth measure.
The transition takes place because the tip-splitting of branches forms a fixed
angle. This angle is eta dependent but it can be rescaled onto an
``effectively'' universal angle of the DLA branching process. We derive an
analytic rescaling relation which is in agreement with numerical simulations.
The dimension of the clusters decreases linearly with the angle and the growth
becomes non-fractal at an angle close to 74 degrees (which corresponds to eta=
4.0 +- 0.3).Comment: 4 pages, REVTex, 3 figure
Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature
We investigate systems of nature where the common physical processes
diffusion and fragmentation compete. We derive a rate equation for the size
distribution of fragments. The equation leads to a third order differential
equation which we solve exactly in terms of Bessel functions. The stationary
state is a universal Bessel distribution described by one parameter, which fits
perfectly experimental data from two very different system of nature, namely,
the distribution of ice crystal sizes from the Greenland ice sheet and the
length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes
Persistent punishment : users views of short prison sentences
Semi-structured interviews were conducted of 22 prisoners to gather information about the characteristic features of short prison sentences. Themes raised in comments included: the frequency and quality of sentences, addiction, family, and penal legitimacy. Most of the participants had extensive experience of prison, and the effects of this played out across sentences and years, accumulating and amplifying impacts. And, despite expressions of guilt and remorse, most participants saw their sentence as unjust, and mainly a reaction to offending history. We conclude by suggesting the need for research to shift focus from evaluating individual penal interventions towards more holistic and narrative accounts that cut across sentences
- …
