764 research outputs found
Understanding Astrophysical Noise from Stellar Surface Magneto-Convection
To obtain cm/s precision, stellar surface magneto-convection must be
disentangled from observed radial velocities (RVs). In order to understand and
remove the convective signature, we create Sun-as-a-star model observations
based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star
model observations, we find several line characteristics are correlated with
the induced RV shifts. The aim of this campaign is to feed directly into future
high precision RV studies, such as the search for habitable, rocky worlds, with
forthcoming spectrographs such as ESPRESSO.Comment: 6 pages, 3 figures; presented at the 18th Cambridge Workshop on Cool
Stars, Stellar Systems, and the Sun (CoolStars18); to appear in the
proceedings of Lowell Observatory (9-13 June 2014), edited by G. van Belle &
H. Harris. Updated with correct y-axis units on righthand plot in figure
Markov Chain Monitoring
In networking applications, one often wishes to obtain estimates about the
number of objects at different parts of the network (e.g., the number of cars
at an intersection of a road network or the number of packets expected to reach
a node in a computer network) by monitoring the traffic in a small number of
network nodes or edges. We formalize this task by defining the 'Markov Chain
Monitoring' problem.
Given an initial distribution of items over the nodes of a Markov chain, we
wish to estimate the distribution of items at subsequent times. We do this by
asking a limited number of queries that retrieve, for example, how many items
transitioned to a specific node or over a specific edge at a particular time.
We consider different types of queries, each defining a different variant of
the Markov chain monitoring. For each variant, we design efficient algorithms
for choosing the queries that make our estimates as accurate as possible. In
our experiments with synthetic and real datasets we demonstrate the efficiency
and the efficacy of our algorithms in a variety of settings.Comment: 13 pages, 10 figures, 1 tabl
Chromospheric Inversions of a Micro-flaring Region
We use spectropolarimetric observations of the Ca II 8542~\AA\ line, taken
from the Swedish 1-m Solar Telescope (SST), in an attempt to recover dynamic
activity in a micro-flaring region near a sunspot via inversions. These
inversions show localized mean temperature enhancements of 1000~K in the
chromosphere and upper photosphere, along with co-spatial bi-directional
Doppler shifting of 5 - 10 km s. This heating also extends along a
nearby chromospheric fibril, co-spatial to 10 - 15 km s down-flows.
Strong magnetic flux cancellation is also apparent in one of the footpoints,
concentrated in the chromosphere. This event more closely resembles that of an
Ellerman Bomb (EB), though placed slightly higher in the atmosphere than is
typically observed.Comment: 9 pages, 9 figures, accepted in ApJ. Movies are stored here:
https://star.pst.qub.ac.uk/webdav/public/areid/Microflare
RHESSI and SOHO/CDS Observations of Explosive Chromospheric Evaporation
Simultaneous observations of explosive chromospheric evaporation are
presented using data from the Reuven Ramaty High Energy Solar Spectroscopic
Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) onboard SOHO. For
the first time, co-spatial imaging and spectroscopy have been used to observe
explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images
and spectra were used to determine the flux of non-thermal electrons
accelerated during the impulsive phase of an M2.2 flare. Assuming a
thick-target model, the injected electron spectrum was found to have a spectral
index of ~7.3, a low energy cut-off of ~20 keV, and a resulting flux of
>4x10^10 ergs cm^-2 s^-1. The dynamic response of the atmosphere was determined
using CDS spectra, finding a mean upflow velocity of 230+/-38 km s^-1 in Fe XIX
(592.23A), and associated downflows of 36+/-16 km s^-1 and 43+/-22 km s^-1 at
chromospheric and transition region temperatures, respectively, relative to an
averaged quiet-Sun spectra. The errors represent a 1 sigma dispersion. The
properties of the accelerated electron spectrum and the corresponding
evaporative velocities were found to be consistent with the predictions of
theory.Comment: 5 pages, 4 figures, ApJL (In Press
Intensity enhancement of O VI ultraviolet emission lines in solar spectra due to opacity
Opacity is a property of many plasmas, and it is normally expected that if an
emission line in a plasma becomes optically thick, its intensity ratio to that
of another transition that remains optically thin should decrease. However,
radiative transfer calculations undertaken both by ourselves and others predict
that under certain conditions the intensity ratio of an optically thick to thin
line can show an increase over the optically thin value, indicating an
enhancement in the former. These conditions include the geometry of the
emitting plasma and its orientation to the observer. A similar effect can take
place between lines of differing optical depth. Previous observational studies
have focused on stellar point sources, and here we investigate the
spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038
A) intensity ratio of O VI in several regions obtained with the Solar
Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the
Solar and Heliospheric Observatory (SoHO) satellite. We find several I(1032
A)/I(1038 A) ratios observed on the disk to be significantly larger than the
optically thin value of 2.0, providing the first detection (to our knowledge)
of intensity enhancement in the ratio arising from opacity effects in the solar
atmosphere. Agreement between observation and theory is excellent, and confirms
that the O VI emission originates from a slab-like geometry in the solar
atmosphere, rather than from cylindrical structures.Comment: 17 pages, 4 figures, ApJ Letters, in pres
A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1
Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamilyclosesttophosducin-likeprotein-3. InPepMV-infectedandhealthyNicotianabenthamiana plants,NbTXND9mRNAlevelswerecomparable,andexpressionlevelsremainedstableinbothlocal and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labellingofultrathinsectionsofPepMV-infectedN.benthamianaleavesusingα-SlTXND9IgGrevealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress
Twisting Flux Tubes as a cause of Micro-Flaring Activity
High-cadence optical observations of an H-alpha blue-wing bright point near
solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar
Telescope at the National Solar Observatory/Sacramento Peak using a newly
developed camera system, the Rapid Dual Imager. Wavelet analysis is undertaken
to search for intensity-related oscillatory signatures, and periodicities
ranging from 15 to 370 s are found with significance levels exceeding 95%.
During two separate microflaring events, oscillation sites surrounding the
bright point are observed to twist. We relate the twisting of the oscillation
sites to the twisting of physical flux tubes, thus giving rise to reconnection
phenomena. We derive an average twist velocity of 8.1 km/s and detect a peak in
the emitted flux between twist angles of 180 and 230 degrees.Comment: 8 pages, 10 figure
Analysis of roles and groups in blogosphere
In the paper different roles of users in social media, taking into
consideration their strength of influence and different degrees of
cooperativeness, are introduced. Such identified roles are used for the
analysis of characteristics of groups of strongly connected entities. The
different classes of groups, considering the distribution of roles of users
belonging to them, are presented and discussed.Comment: 8th International Conference on Computer Recognition Systems, CORES
201
Discovery of close companions to the nearby young stars HD 199143 and HD 358623
Young stellar systems in the solar neighborhood provide valuable laboratories
for detailed studies of star and planet formation. The bright F8V star HD
199143 and the Li-rich late-type emission line star HD 358623 are among the
nearest young stars identified to date, and may be members of a young
association in Capricornus. We present high-resolution near-infrared images of
these two sources, obtained using the adaptive optics system on the 3.6-meter
telescope at the European Southern Observatory in La Silla, Chile. Our
observations reveal that both are in fact close binary systems. The newly
discovered companion at a separation of 1'' may account for the unusual
characteristics of HD 199143 --rapid rotation, emission lines, ultraviolet
variability, and excess infrared emission-- recently discussed by van den
Ancker and co-workers. HD 199143 may be a rare example of a close binary with
only a circum{\it secondary} disk. With the detection of a 2'' companion,
HD 358623 is now possibly one of the closest known T Tauri binaries. Both
binary systems are prime targets for follow-up spectroscopic and astrometric
observations.Comment: 9 pages, 1 PostScript figure, to appear in The Astrophysical Journal
Letter
A New Multiple Stellar System in the Solar Neighborhood
Adaptive optics corrected images obtained with the CIAO instrument at the
Subaru 8.2-meter telescope show the presence of two subarsecond companions to
the nearby (d=19.3 pc) young star GJ 900, which was previously classified as a
single member of the IC 2391 supercluster. The two companions share the same
proper motion as the primary and are redder. Their projected separations from
the primary are 10 AU and 14.5 AU for B and C, respectively. The estimated
masses for the two new companions depend strongly on the age of the system. For
the range of ages found in the literature for IC 2391 supercluster members
(from 35 Myr to 200 Myr), the expected masses range from 0.2 M to 0.4
M for the B component, and from 0.09 M to 0.22 M for
the C component. The determination of the dynamical mass of the faintest
component of GJ 900 will yield the age of the system using theoretical
evolutionary tracks. The apparent separations of the GJ 900 system components
meet the observational criterion for an unstable Trapezium-type system, but
this could be a projection effect. Further observations are needed to establish
the nature of this interesting low-mass multiple system.Comment: Scheduled for publication in the Astronomical Journal (August 2003
- …
