764 research outputs found

    Understanding Astrophysical Noise from Stellar Surface Magneto-Convection

    Full text link
    To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.Comment: 6 pages, 3 figures; presented at the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CoolStars18); to appear in the proceedings of Lowell Observatory (9-13 June 2014), edited by G. van Belle & H. Harris. Updated with correct y-axis units on righthand plot in figure

    Markov Chain Monitoring

    Full text link
    In networking applications, one often wishes to obtain estimates about the number of objects at different parts of the network (e.g., the number of cars at an intersection of a road network or the number of packets expected to reach a node in a computer network) by monitoring the traffic in a small number of network nodes or edges. We formalize this task by defining the 'Markov Chain Monitoring' problem. Given an initial distribution of items over the nodes of a Markov chain, we wish to estimate the distribution of items at subsequent times. We do this by asking a limited number of queries that retrieve, for example, how many items transitioned to a specific node or over a specific edge at a particular time. We consider different types of queries, each defining a different variant of the Markov chain monitoring. For each variant, we design efficient algorithms for choosing the queries that make our estimates as accurate as possible. In our experiments with synthetic and real datasets we demonstrate the efficiency and the efficacy of our algorithms in a variety of settings.Comment: 13 pages, 10 figures, 1 tabl

    Chromospheric Inversions of a Micro-flaring Region

    Get PDF
    We use spectropolarimetric observations of the Ca II 8542~\AA\ line, taken from the Swedish 1-m Solar Telescope (SST), in an attempt to recover dynamic activity in a micro-flaring region near a sunspot via inversions. These inversions show localized mean temperature enhancements of \sim1000~K in the chromosphere and upper photosphere, along with co-spatial bi-directional Doppler shifting of 5 - 10 km s1^{-1}. This heating also extends along a nearby chromospheric fibril, co-spatial to 10 - 15 km s1^{-1} down-flows. Strong magnetic flux cancellation is also apparent in one of the footpoints, concentrated in the chromosphere. This event more closely resembles that of an Ellerman Bomb (EB), though placed slightly higher in the atmosphere than is typically observed.Comment: 9 pages, 9 figures, accepted in ApJ. Movies are stored here: https://star.pst.qub.ac.uk/webdav/public/areid/Microflare

    RHESSI and SOHO/CDS Observations of Explosive Chromospheric Evaporation

    Full text link
    Simultaneous observations of explosive chromospheric evaporation are presented using data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) onboard SOHO. For the first time, co-spatial imaging and spectroscopy have been used to observe explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images and spectra were used to determine the flux of non-thermal electrons accelerated during the impulsive phase of an M2.2 flare. Assuming a thick-target model, the injected electron spectrum was found to have a spectral index of ~7.3, a low energy cut-off of ~20 keV, and a resulting flux of >4x10^10 ergs cm^-2 s^-1. The dynamic response of the atmosphere was determined using CDS spectra, finding a mean upflow velocity of 230+/-38 km s^-1 in Fe XIX (592.23A), and associated downflows of 36+/-16 km s^-1 and 43+/-22 km s^-1 at chromospheric and transition region temperatures, respectively, relative to an averaged quiet-Sun spectra. The errors represent a 1 sigma dispersion. The properties of the accelerated electron spectrum and the corresponding evaporative velocities were found to be consistent with the predictions of theory.Comment: 5 pages, 4 figures, ApJL (In Press

    Intensity enhancement of O VI ultraviolet emission lines in solar spectra due to opacity

    Full text link
    Opacity is a property of many plasmas, and it is normally expected that if an emission line in a plasma becomes optically thick, its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depth. Previous observational studies have focused on stellar point sources, and here we investigate the spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038 A) intensity ratio of O VI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the Solar and Heliospheric Observatory (SoHO) satellite. We find several I(1032 A)/I(1038 A) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. Agreement between observation and theory is excellent, and confirms that the O VI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.Comment: 17 pages, 4 figures, ApJ Letters, in pres

    A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1

    Get PDF
    Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamilyclosesttophosducin-likeprotein-3. InPepMV-infectedandhealthyNicotianabenthamiana plants,NbTXND9mRNAlevelswerecomparable,andexpressionlevelsremainedstableinbothlocal and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labellingofultrathinsectionsofPepMV-infectedN.benthamianaleavesusingα-SlTXND9IgGrevealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress

    Twisting Flux Tubes as a cause of Micro-Flaring Activity

    Full text link
    High-cadence optical observations of an H-alpha blue-wing bright point near solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system, the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity-related oscillatory signatures, and periodicities ranging from 15 to 370 s are found with significance levels exceeding 95%. During two separate microflaring events, oscillation sites surrounding the bright point are observed to twist. We relate the twisting of the oscillation sites to the twisting of physical flux tubes, thus giving rise to reconnection phenomena. We derive an average twist velocity of 8.1 km/s and detect a peak in the emitted flux between twist angles of 180 and 230 degrees.Comment: 8 pages, 10 figure

    Analysis of roles and groups in blogosphere

    Full text link
    In the paper different roles of users in social media, taking into consideration their strength of influence and different degrees of cooperativeness, are introduced. Such identified roles are used for the analysis of characteristics of groups of strongly connected entities. The different classes of groups, considering the distribution of roles of users belonging to them, are presented and discussed.Comment: 8th International Conference on Computer Recognition Systems, CORES 201

    Discovery of close companions to the nearby young stars HD 199143 and HD 358623

    Get PDF
    Young stellar systems in the solar neighborhood provide valuable laboratories for detailed studies of star and planet formation. The bright F8V star HD 199143 and the Li-rich late-type emission line star HD 358623 are among the nearest young stars identified to date, and may be members of a young association in Capricornus. We present high-resolution near-infrared images of these two sources, obtained using the adaptive optics system on the 3.6-meter telescope at the European Southern Observatory in La Silla, Chile. Our observations reveal that both are in fact close binary systems. The newly discovered companion at a separation of \sim1'' may account for the unusual characteristics of HD 199143 --rapid rotation, emission lines, ultraviolet variability, and excess infrared emission-- recently discussed by van den Ancker and co-workers. HD 199143 may be a rare example of a close binary with only a circum{\it secondary} disk. With the detection of a \sim2'' companion, HD 358623 is now possibly one of the closest known T Tauri binaries. Both binary systems are prime targets for follow-up spectroscopic and astrometric observations.Comment: 9 pages, 1 PostScript figure, to appear in The Astrophysical Journal Letter

    A New Multiple Stellar System in the Solar Neighborhood

    Full text link
    Adaptive optics corrected images obtained with the CIAO instrument at the Subaru 8.2-meter telescope show the presence of two subarsecond companions to the nearby (d=19.3 pc) young star GJ 900, which was previously classified as a single member of the IC 2391 supercluster. The two companions share the same proper motion as the primary and are redder. Their projected separations from the primary are 10 AU and 14.5 AU for B and C, respectively. The estimated masses for the two new companions depend strongly on the age of the system. For the range of ages found in the literature for IC 2391 supercluster members (from 35 Myr to 200 Myr), the expected masses range from 0.2 M_\odot to 0.4 M_\odot for the B component, and from 0.09 M_\odot to 0.22 M_\odot for the C component. The determination of the dynamical mass of the faintest component of GJ 900 will yield the age of the system using theoretical evolutionary tracks. The apparent separations of the GJ 900 system components meet the observational criterion for an unstable Trapezium-type system, but this could be a projection effect. Further observations are needed to establish the nature of this interesting low-mass multiple system.Comment: Scheduled for publication in the Astronomical Journal (August 2003
    corecore