6,805 research outputs found
The evolution of the Mira variable R Hydrae
The Mira variable R Hydrae is well known for its declining period, which Wood
& Zarro (1981) attributed to a possible recent thermal pulse. Here we
investigate the long-term period evolution, covering 340 years, going back to
its discovery in AD 1662. Wavelets are used to determine both the period and
semi-amplitude. We show that the period decreased linearly between 1770 and
1950; since 1950 the period has stabilized at 385 days. The semi-amplitude
closely follows the period evolution. Detailed analysis of the oldest data
shows that before 1770 the period was about 495 days. We find no evidence for
an increasing period during this time as found by Wood & Zarro. IRAS data shows
that the mass loss dropped dramatically around AD 1750. The decline agrees with
the mass-loss formalism from Vassiliadis & Wood, but is much larger than
predicted by the Bloecker mass-loss law. An outer detached IRAS shell suggests
that R Hya has experienced such mass-loss interruptions before. The period
evolution can be explained by a thermal pulse occuring around AD 1600, or by an
non-linear instability leading to an internal relaxation of the stellar
structure. The elapsed time between the mass-loss decline giving rise to the
outer detached shell, and the recent event, of approximately 5000 yr suggests
that only one of these events could be due to a thermal pulse. Further
monitoring of R Hya is recommended, as both models make strong predictions for
the future period evolution. R Hya-type events, on time scales of 10^2-10^3 yr,
could provide part of the explanation for the rings seen around some AGB and
post-AGB stars.Comment: 13 pages. MNRAS, accepted for publicatio
Nonparametric Estimators of Dose-Response Functions
We propose two semiparametric estimators of the dose-response function based on spline techniques. Under uncounfoundedness, the generalized propensity score can be used to estimate dose-response functions (DRF) and marginal treatment effect functions. In many observational studies treatment may not be binary or categorical. In such cases, one may be interested in estimating the dose-response function in a setting with a continuous treatment. We evaluate the performance of the proposed estimators using Monte Carlo simulation methods. The simulation results suggested that the estimated DRF is robust to the specific semiparametric estimator used, while the parametric estimates of the DRF were sensitive to model mis-specification. We apply our approach to the problem of evaluating the effect on innovation sales of Research and Development (R&D) financial aids received by Luxembourgish firms in 2004 and 2005.Continuous treatment; Dose-response function; Generalized Propensity Score; Non-parametric methods; R&D investment
The inter-outburst behavior of cataclysmic variables
Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined
A Robust Filter for the BeppoSAX Gamma Ray Burst Monitor Triggers
The BeppoSAX Gamma Ray Burst Monitor (GRBM) is triggered any time a
statistically significant counting excess is simultaneously revealed by at
least two of its four independent detectors. Several spurious effects,
including highly ionizing particles crossing two detectors, are recorded as
onboard triggers. In fact, a large number of false triggers is detected, in the
order of 10/day. A software code, based on an heuristic algorithm, was written
to discriminate between real and false triggers. We present the results of the
analysis on an homogeneous sample of GRBM triggers, thus providing an estimate
of the efficiency of the GRB detection system consisting of the GRBM and the
software.Comment: Proc. 5th Huntsville GRB Symposiu
On the role of galactic magnetic halo in the ultra high energy cosmic rays propagation
The study of propagation of Ultra High Energy Cosmic Rays (UHECR) is a key
step in order to unveil the secret of their origin. Up to now it was considered
only the influence of the galactic and the extragalactic magnetic fields. In
this article we focus our analysis on the influence of the magnetic field of
the galaxies standing between possible UHECR sources and us. Our main approach
is to start from the well known galaxy distribution up to 120 Mpc. We use the
most complete galaxy catalog: the LEDA catalog. Inside a sphere of 120 Mpc
around us, we extract 60130 galaxies with known position. In our simulations we
assign a Halo Dipole magnetic Field (HDF) to each galaxy. The code developed is
able to retro-propagate a charged particle from the arrival points of UHECR
data across our galaxies sample. We present simulations in case of Virgo
cluster and show that there is a non negligible deviation in the case of
protons of eV, even if the value is conservative. Then
special attention is devoted to the AGASA triplet where we find that NGC3998
and NGC3992 could be possible candidates as sources.Comment: Version accepted from ApJ, 5 figure
Is ALT control really necessary for routine ART monitoring in resource poor settings?
2006 AIDS Conference in Toront
- …
