1,133 research outputs found
Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems
This paper addresses the problem of resource allocation for systems in which
a primary and a secondary link share the available spectrum by an underlay or
overlay approach. After observing that such a scenario models both cognitive
radio and D2D communications, we formulate the problem as the maximization of
the secondary energy efficiency subject to a minimum rate requirement for the
primary user. This leads to challenging non-convex, fractional problems. In the
underlay scenario, we obtain the global solution by means of a suitable
reformulation. In the overlay scenario, two algorithms are proposed. The first
one yields a resource allocation fulfilling the first-order optimality
conditions of the resource allocation problem, by solving a sequence of easier
fractional problems. The second one enjoys a weaker optimality claim, but an
even lower computational complexity. Numerical results demonstrate the merits
of the proposed algorithms both in terms of energy-efficient performance and
complexity, also showing that the two proposed algorithms for the overlay
scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin
Spectral and Energy Efficiency in 3-Way Relay Channels with Circular Message Exchanges
Spectral and energy efficiency in 3-way relay channels are studied in this
paper. First, achievable sum rate expressions for 3-way relay channels are
derived for different relaying protocols. Moreover, an outer bound for the
capacity of the 3-way relay channel is presented. Next, leveraging the derived
achievable sum rate expressions, two algorithms for joint power allocation at
the users and at the relay are designed so as to maximize the system energy
efficiency. Numerical results are provided to corroborate and provide insight
on the theoretical findings.Comment: 5 pages, to be presented at ISWCS 2014, Barcelona, Spai
Resource Allocation for Energy-Efficient 3-Way Relay Channels
Throughput and energy efficiency in 3-way relay channels are studied in this
paper. Unlike previous contributions, we consider a circular message exchange.
First, an outer bound and achievable sum rate expressions for different
relaying protocols are derived for 3-way relay channels. The sum capacity is
characterized for certain SNR regimes. Next, leveraging the derived achievable
sum rate expressions, cooperative and competitive maximization of the energy
efficiency are considered. For the cooperative case, both low-complexity and
globally optimal algorithms for joint power allocation at the users and at the
relay are designed so as to maximize the system global energy efficiency. For
the competitive case, a game theoretic approach is taken, and it is shown that
the best response dynamics is guaranteed to converge to a Nash equilibrium. A
power consumption model for mmWave board-to-board communications is developed,
and numerical results are provided to corroborate and provide insight on the
theoretical findings.Comment: Submitted to IEEE Transactions on Wireless Communication
Direct Measurement of Quantum Dot Spin Dynamics using Time-Resolved Resonance Fluorescence
We temporally resolve the resonance fluorescence from an electron spin
confined to a single self-assembled quantum dot to measure directly the spin's
optical initialization and natural relaxation timescales. Our measurements
demonstrate that spin initialization occurs on the order of microseconds in the
Faraday configuration when a laser resonantly drives the quantum dot
transition. We show that the mechanism mediating the optically induced
spin-flip changes from electron-nuclei interaction to hole-mixing interaction
at 0.6 Tesla external magnetic field. Spin relaxation measurements result in
times on the order of milliseconds and suggest that a magnetic field
dependence, due to spin-orbit coupling, is sustained all the way down to 2.2
Tesla.Comment: An additional EPAPS file in PDF format is available for download at
the publications section of our website
http://www.amop.phy.cam.ac.uk/amop-ma
Direct photonic coupling of a semiconductor quantum dot and a trapped ion.
Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network
A search for solar-like oscillations in K giants in the globular cluster M4
To expand the range in the colour-magnitude diagram where asteroseismology
can be applied, we organized a photometry campaign to find evidence for
solar-like oscillations in giant stars in the globular cluster M4. The aim was
to detect the comb-like p-mode structure characteristic for solar-like
oscillations in the amplitude spectra. The two dozen main target stars are in
the region of the bump stars and have luminosities in the range 50-140 Lsun. We
collected 6160 CCD frames and light curves for about 14000 stars were
extracted. We obtain high quality light curves for the K giants, but no clear
oscillation signal is detected. High precision differential photometry is
possible even in very crowded regions like the core of M4. Solar-like
oscillations are probably present in K giants, but the amplitudes are lower
than classical scaling laws predict.Comment: 14 pages, 16 figures, accepted for publication in A&
On-demand semiconductor single-photon source with near-unity indistinguishability
Single photon sources based on semiconductor quantum dots offer distinct
advantages for quantum information, including a scalable solid-state platform,
ultrabrightness, and interconnectivity with matter qubits. A key prerequisite
for their use in optical quantum computing and solid-state networks is a high
level of efficiency and indistinguishability. Pulsed resonance fluorescence
(RF) has been anticipated as the optimum condition for the deterministic
generation of high-quality photons with vanishing effects of dephasing. Here,
we generate pulsed RF single photons on demand from a single,
microcavity-embedded quantum dot under s-shell excitation with 3-ps laser
pulses. The pi-pulse excited RF photons have less than 0.3% background
contributions and a vanishing two-photon emission probability.
Non-postselective Hong-Ou-Mandel interference between two successively emitted
photons is observed with a visibility of 0.97(2), comparable to trapped atoms
and ions. Two single photons are further used to implement a high-fidelity
quantum controlled-NOT gate.Comment: 11 pages, 11 figure
- …
