1,956 research outputs found
Inhomogeneous Nuclear Spin Flips
We discuss a feedback mechanism between electronic states in a double quantum
dot and the underlying nuclear spin bath. We analyze two pumping cycles for
which this feedback provides a force for the Overhauser fields of the two dots
to either equilibrate or diverge. Which of these effects is favored depends on
the g-factor and Overhauser coupling constant A of the material. The strength
of the effect increases with A/V_x, where V_x is the exchange matrix element,
and also increases as the external magnetic field B_{ext} decreases.Comment: 5 pages, 4 figures (jpg
A modified triplet-wave expansion method applied to the alternating Heisenberg chain
An alternative triplet-wave expansion formalism for dimerized spin systems is
presented, a modification of the 'bond operator' formalism of Sachdev and
Bhatt. Projection operators are used to confine the system to the physical
subspace, rather than constraint equations. The method is illustrated for the
case of the alternating Heisenberg chain, and comparisons are made with the
results of dimer series expansions and exact diagonalization. Some discussion
is included of the phenomenon of 'quasiparticle breakdown', as it applies to
the two-triplon bound states in this model.Comment: 16 pages, 12 figure
Magnetic structure and phase diagram in a spin-chain system: CaCoO
The low-temperature structure of the frustrated spin-chain compound
CaCoO is determined by the ground state of the 2D Ising model on
the triangular lattice. At high-temperatures it transforms to the honeycomb
magnetic structure. It is shown that the crossover between the two magnetic
structures at 12 K arises from the entropy accumulated in the disordered
chains. This interpretation is in an agreement with the experimental data.
General rules for for the phase diagram of frustrated Ising chain compounds are
formulated.Comment: 4 pages, 2 figure
Spin-spin correlators in Majorana representation
In the Majorana representation of a spin 1/2 we find an identity which
relates spin-spin correlators to one-particle fermionic correlators. This
should be contrasted with the straightforward approach in which two-particle
(four-fermion) correlators need to be calculated. We discuss applications to
the analysis of the dynamics of a spin coupled to a dissipative environment and
of a quantum detector performing a continuous measurement of a qubit's state
The Trapped Polarized Fermi Gas at Unitarity
We consider population-imbalanced two-component Fermi gases under external
harmonic confinement interacting through short-range two-body potentials with
diverging s-wave scattering length. Using the fixed-node diffusion Monte Carlo
method, the energies of the "normal state" are determined as functions of the
population-imbalance and the number of particles. The energies of the trapped
system follow, to a good approximation, a universal curve even for fairly small
systems. A simple parameterization of the universal curve is presented and
related to the equation of state of the bulk system.Comment: 4 pages, 2 tables, 2 figure
From Effective Lagrangians, to Chiral Bags, to Skyrmions with the Large-N_c Renormalization Group
We explicitly relate effective meson-baryon Lagrangian models, chiral bags,
and Skyrmions in the following way. First, effective Lagrangians are
constructed in a manner consistent with an underlying large-N_c QCD. An
infinite set of graphs dress the bare Yukawa couplings at *leading* order in
1/N_c, and are summed using semiclassical techniques. What emerges is a picture
of the large-N_c baryon reminiscent of the chiral bag: hedgehog pions for r >
1/\Lambda patched onto bare nucleon degrees of freedom for r < 1/\Lambda, where
the ``bag radius'' 1/\Lambda is the UV cutoff on the graphs. Next, a novel
renormalization group (RG) is derived, in which the bare Yukawa couplings,
baryon masses and hyperfine baryon mass splittings run with \Lambda. Finally,
this RG flow is shown to act as a *filter* on the renormalized Lagrangian
parameters: when they are fine-tuned to obey Skyrme-model relations the
continuum limit \Lambda --> \infty exists and is, in fact, a Skyrme model;
otherwise there is no continuum limit.Comment: Figures included (separate file). This ``replaced'' version corrects
the discussion of backwards-in-time baryon
Quantum Hall Ferrimagnetism in lateral quantum dot molecules
We demonstrate the existance of ferrimagnetic and ferromagnetic phases in a
spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall
regime. The spin phase diagram is determined from Hartree-Fock Configuration
Interaction method as a function of electron numbers N, magnetic field B,
Zeeman energy, and tunneling barrier height. The quantum Hall ferrimagnetic
phase corresponds to spatially imbalanced spin droplets resulting from strong
inter-dot coupling of identical dots. The quantum Hall ferromagnetic phases
correspond to ferromagnetic coupling of spin polarization at filling factors
between and .Comment: 4 pages, 4 figure
Excited Baryons in Large N_c QCD Revisited: The Resonance Picture Versus Single-Quark Excitations
We analyze excited baryon properties via a 1/N_c expansion from two
perspectives: as resonances in meson-nucleon scattering, and as single-quark
excitations in the context of a simple quark model. For both types of analysis
one can derive novel patterns of degeneracy that emerge as N_c --> \infty, and
that are shown to be compatible with one another. This helps justify the
single-quark excitation picture and may give some insight into its successes.
We also find that in the large N_c limit one of the S_{11} baryons does not
couple to the pi-N channel but couples to the eta-N channel. This is
empirically observed in the N(1535), which couples very weakly to the pi-N
channel and quite strongly to the eta-N channel. The comparatively strong
coupling of the N(1650) to the pi-N channel and weak coupling to eta-N channel
is also predicted. In the context of the simple quark model picture we
reproduce expressions for mixing angles that are accurate up to O(1/N_c)
corrections and are in good agreement with mixing angles extracted
phenomenologically.Comment: 13 pages, ReVTeX
Pion-Nucleon Scattering in a Large-N Sigma Model
We review the large-N_c approach to meson-baryon scattering, including recent
interesting developments. We then study pion-nucleon scattering in a particular
variant of the linear sigma-model, in which the couplings of the sigma and pi
mesons to the nucleon are echoed by couplings to the entire tower of I=J
baryons (including the Delta) as dictated by large-N_c group theory. We sum the
complete set of multi-loop meson-exchange
\pi N --> \pi N and \pi N --> \sigma N Feynman diagrams, to leading order in
1/N_c. The key idea, reviewed in detail, is that large-N_c allows the
approximation of LOOP graphs by TREE graphs, so long as the loops contain at
least one baryon leg; trees, in turn, can be summed by solving classical
equations of motion. We exhibit the resulting partial-wave S-matrix and the
rich nucleon and Delta resonance spectrum of this simple model, comparing not
only to experiment but also to pion-nucleon scattering in the Skyrme model. The
moral is that much of the detailed structure of the meson-baryon S-matrix which
hitherto has been uncovered only with skyrmion methods, can also be described
by models with explicit baryon fields, thanks to the 1/N_c expansion.Comment: This LaTeX file inputs the ReVTeX macropackage; figures accompany i
Probing the spin states of three interacting electrons in quantum dots
We observe a low-lying sharp spin mode of three interacting electrons in an
array of nanofabricated AlGaAs/GaAs quantum dots by means of resonant inelastic
light scattering. The finding is enabled by a suppression of the inhomogeneous
contribution to the excitation spectra obtained by reducing the number of
optically-probed quantum dots. Supported by configuration-interaction
calculations we argue that the observed spin mode offers a direct probe of
Stoner ferromagnetism in the simplest case of three interacting spin one-half
fermions
- …
