9,971 research outputs found

    Rates and Equilibria for a Photoisomerizable Antagonist at the Acetylcholine Receptor of Electrophorus Electroplaques

    Get PDF
    Voltage-jump and light-flash experiments have been performed on isolated Electrophorus electroplaques exposed simultaneously to nicotinic agonists and to the photoisomerizable compound 2,2'-bis-[α-(trimethylammonium)methyl]-azobenzene (2BQ). Dose-response curves are shifted to the right in a nearly parallel fashion by 2BQ, which suggests competitive antagonism; dose-ratio analyses show apparent dissociation constants of 0.3 and 1 µM for the cis and trans isomers, respectively. Flash-induced trans → cis concentration jumps produce the expected decrease in agonist-induced conductance; the time constant is several tens of milliseconds. From the concentration dependence of these rates, we conclude that the association and dissociation rate constants for the cis-2BQ-receptor binding are approximately ~ 10^8 M^(-1) s^(-1) and 60 s^(-1) at 20ºC; the Q_(10) is 3. Flash-induced cis → trans photoisomerizations produce molecular rearrangements of the ligand-receptor complex, but the resulting relaxations probably reflect the kinetics of buffered diffusion rather than of the interaction between trans-2BQ and the receptor. Antagonists seem to bind about an order of magnitude more slowly than agonists at nicotinic receptors

    Anharmonic phonon spectra of PbTe and SnTe in the self-consistent harmonic approximation

    Full text link
    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depends on the approximation used for the exchange-correlation kernel in density functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the free energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe, we reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ\GammaX direction. In the case of SnTe, we describe the occurrence of a ferroelectric transition from the high temperature Fm3\overline{3}m structure to the low temperature R3m one.Comment: 12 pages, 15 Picture

    Kohn Anomalies and Electron-Phonon Interaction in Graphite

    Full text link
    We demonstrate that graphite phonon dispersions have two Kohn anomalies at the Gamma-E_2g and K-A'1 modes. The anomalies are revealed by two sharp kinks. By an exact analytic derivation, we show that the slope of these kinks is proportional to the square of the electron-phonon coupling (EPC). Thus, we can directly measure the EPC from the experimental dispersions. The Gamma-E_2g and K-A'1 EPCs are particularly large, whilst they are negligible for all the other modes at Gamma and K.Comment: 4 pages, 2 figure

    A Model-Driven Approach for Crowdsourcing Search

    Get PDF
    Even though search systems are very ecient in retrieving world-wide information, they can not capture some peculiar aspects and features of user needs, such as subjective opin- ions and recommendations, or information that require local or domain specic expertise. In this kind of scenario, the hu- man opinion provided by an expert or knowledgeable user can be more useful than any factual information retrieved by a search engine. In this paper we propose a model-driven approach for the specication of crowd-search tasks, i.e. activities where real people { in real time { take part to the generalized search process that involve search engines. In particular we dene two models: the\Query TaskModel", representing the meta- model of the query that is submitted to the crowd and the associated answers; and the \User Interaction Model", which shows how the user can interact with the query model to fulll her needs. Our solution allows for a top-down design approach, from the crowd-search task design, down to the crowd answering system design. Our approach also grants automatic code generation thus leading to quick prototyping of search applications based on human responses collected over social networking or crowdsourcing platforms

    Spin torque, tunnel-current spin polarization and magnetoresistance in MgO magnetic tunnel junctions

    Full text link
    We examine the spin torque (ST) response of magnetic tunnel junctions (MTJs) with ultra-thin MgO tunnel barrier layers to investigate the relationship between the spin-transfer torque and the tunnel magnetoresistance (TMR) under finite bias. We find that the spin torque per unit current exerted on the free layer decreases by less than 10% over a bias range where the TMR decreases by over 40%. We examine the implications of this result for various spin-polarized tunneling models and find that it is consistent with magnetic-state-dependent effective tunnel decay lengths.Comment: 4 pages, 3 figure

    Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular resolved photoemission spectra

    Full text link
    We obtain analytical expressions for the electron self-energy and the electron-phonon coupling in electron-doped graphene using electron-phonon matrix elements extracted from density functional theory simulations. From the electron self-energies we calculate angle resolved photoemission spectra. We demonstrate that the measured kink at 0.2\approx -0.2 eV from the Fermi level is actually composed of two features, one at 0.195\approx -0.195 eV due to the twofold degenerate E2g_{2g} mode, and a second one at 0.16\approx -0.16 eV due to the A1_{1}^{'} mode. The electron-phonon coupling extracted from the kink observed in ARPES experiments is roughly a factor of 5.5 larger than the calculated one. This disagreement can only be partially reconciled by the inclusion of resolution effects. Indeed we show that a finite resolution increases the apparent electron-phonon coupling by underestimating the renormalization of the electron velocity at energies larger than the kinks positions. The discrepancy between theory and experiments is thus reduced to a factor of \approx 2.2. From the linewidth of the calculated ARPES spectra we obtain the electron relaxation time. A comparison with available experimental data in graphene shows that the electron relaxation time detected in ARPES is almost two orders of magnitudes smaller than what measured by other experimental techniques.Comment: 9 pages, 7 figures, see also Matteo Calandra and Francesco Mauri, arXiv:0707.149
    corecore