645 research outputs found

    On Functions of quasi Toeplitz matrices

    Full text link
    Let a(z)=iZaizia(z)=\sum_{i\in\mathbb Z}a_iz^i be a complex valued continuous function, defined for z=1|z|=1, such that i=+iai<\sum_{i=-\infty}^{+\infty}|ia_i|<\infty. Consider the semi-infinite Toeplitz matrix T(a)=(ti,j)i,jZ+T(a)=(t_{i,j})_{i,j\in\mathbb Z^+} associated with the symbol a(z)a(z) such that ti,j=ajit_{i,j}=a_{j-i}. A quasi-Toeplitz matrix associated with the continuous symbol a(z)a(z) is a matrix of the form A=T(a)+EA=T(a)+E where E=(ei,j)E=(e_{i,j}), i,jZ+ei,j<\sum_{i,j\in\mathbb Z^+}|e_{i,j}|<\infty, and is called a CQT-matrix. Given a function f(x)f(x) and a CQT matrix MM, we provide conditions under which f(M)f(M) is well defined and is a CQT matrix. Moreover, we introduce a parametrization of CQT matrices and algorithms for the computation of f(M)f(M). We treat the case where f(x)f(x) is assigned in terms of power series and the case where f(x)f(x) is defined in terms of a Cauchy integral. This analysis is applied also to finite matrices which can be written as the sum of a Toeplitz matrix and of a low rank correction

    Computing the Exponential of Large Block-Triangular Block-Toeplitz Matrices Encountered in Fluid Queues

    Full text link
    The Erlangian approximation of Markovian fluid queues leads to the problem of computing the matrix exponential of a subgenerator having a block-triangular, block-Toeplitz structure. To this end, we propose some algorithms which exploit the Toeplitz structure and the properties of generators. Such algorithms allow to compute the exponential of very large matrices, which would otherwise be untreatable with standard methods. We also prove interesting decay properties of the exponential of a generator having a block-triangular, block-Toeplitz structure

    General solution of the Poisson equation for Quasi-Birth-and-Death processes

    Full text link
    We consider the Poisson equation (IP)u=g(I-P)\boldsymbol{u}=\boldsymbol{g}, where PP is the transition matrix of a Quasi-Birth-and-Death (QBD) process with infinitely many levels, g\bm g is a given infinite dimensional vector and u\bm u is the unknown. Our main result is to provide the general solution of this equation. To this purpose we use the block tridiagonal and block Toeplitz structure of the matrix PP to obtain a set of matrix difference equations, which are solved by constructing suitable resolvent triples

    Shift techniques for Quasi-Birth and Death processes: canonical factorizations and matrix equations

    Full text link
    We revisit the shift technique applied to Quasi-Birth and Death (QBD) processes (He, Meini, Rhee, SIAM J. Matrix Anal. Appl., 2001) by bringing the attention to the existence and properties of canonical factorizations. To this regard, we prove new results concerning the solutions of the quadratic matrix equations associated with the QBD. These results find applications to the solution of the Poisson equation for QBDs

    From Algebraic Riccati equations to unilateral quadratic matrix equations: old and new algorithms

    Get PDF
    The problem of reducing an algebraic Riccati equation XCXAXXD+B=0XCX-AX-XD+B=0 to a unilateral quadratic matrix equation (UQME) of the kind PX2+QX+RPX^2+QX+R is analyzed. New reductions are introduced which enable one to prove some theoretical and computational properties. In particular we show that the structure preserving doubling algorithm of B.D.O. Anderson [Internat. J. Control, 1978] is nothing else but the cyclic reduction algorithm applied to a suitable UQME. A new algorithm obtained by complementing our reductions with the shrink-and-shift tech- nique of Ramaswami is presented. Finally, faster algorithms which require some non-singularity conditions, are designed. The non-singularity re- striction is relaxed by introducing a suitable similarity transformation of the Hamiltonian

    Nonsymmetric algebraic Riccati equations associated with an M-matrix: recent advances and algorithms

    Get PDF
    We survey on theoretical properties and algorithms concerning the problem of solving a nonsymmetric algebraic Riccati equation, and we report on some known methods and new algorithmic advances. In particular, some results on the number of positive solutions are proved and a careful convergence analysis of Newton\u27s iteration is carried out in the cases of interest where some singularity conditions are encountered. From this analysis we determine initial approximations which still guarantee the quadratic convergence

    On the tail decay of M/G/1-type Markov renewal processes

    Get PDF
    The tail decay of M/G/1-type Markov renewal processes is studied. The Markov renewal process is transformed into a Markov chain so that the problem of tail decay is reformulated in terms of the decay of the coefficients of a suitable power series. The latter problem is reduced to analyze the analyticity domain of the power series

    Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases

    Get PDF
    Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy

    Mirror Neurons as a Conceptual Mechanism?

    Get PDF
    corecore