37 research outputs found
Determination of 8B(p,gamma)9C reaction rate from 9C breakup
The astrophysical factor of the 8B(p,gamma)9C at zero energy, S18(0), is
determined from three-body model analysis of 9C breakup processes. The elastic
breakup 208Pb(9C,p8B)208Pb at 65 MeV/nucleon and the one-proton removal
reaction of 9C at 285 MeV/nucleon on C and Al targets are calculated with the
continuum-discretized coupled-channels method (CDCC) and the eikonal reaction
theory (ERT), respectively. The asymptotic normalization coefficient (ANC) of
9C in the p-8B configuration extracted from the two reactions show good
consistency, in contrast to in the previous studies. As a result of the present
analysis, S18(0) = 66 \pm 10 eVb is obtained.Comment: 5 pages, 3 figures, 3 table
Nuclear data evaluation of long-lived fission products: Microscopic vs. phenomenological optical potentials
Neutron-nucleus cross sections calculated by macroscopic potentials are compared with a microscopic one to study the performance for long-lived fission products. The macroscopic potentials show a good agreement with the microscopic one at higher energies, where neutron experimental data are scarce. Besides it, analyses of differential elastic cross sections at low energies also suggest that the macroscopic potentials are still effective and applicable enough for the long-lived fission products
Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases
The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment
Characterization of diamondlike carbon films grown by super‐wide electron‐cyclotron resonance plasma assisted chemical vapor deposition
Histidine146 of Human Serum Albumin Plays a Prominent Role at the Interface of Subdomains IA and IIA in Allosteric Ligand Binding
Fatty acids are endogenous ligands of human serum albumin (HSA) that induce conformational changes and participate in allosteric ligand binding to HSA. In a previous study, we showed that, when myristate (MYR) is present, the binding of [14C]ketoprofen (KP) to subdomain IA of HSA was increased, indicating that, when MYR binds to HSA, a new binding site in formed in that region. Meanwhile, an N-B transition has been reported to increase the binding of ligands at alkaline pH when the status of albumin is the B-conformer. Six histidine single mutants of HSA, H9A, H39A, H67A, H105A, H128A and H146A were produced and photolabeled with [14C]KP at pH 6.5, 7.4 and 8.2 and the role of each histidine in causing the N-B transition induced allosteric ligand binding was examined. Cyanogen bromide cleavage of the photolabeled native HSA showed that subdomain IA was the site of the allosteric binding of KP at pH 8.2.From the photolabeling results, H146 was found to play a prominent role whilst H128 played little or no role in the allosteric binding. However, the remaining 4 mutants did not show a clear photolabeling pattern that was similar to either native HSA or H146A and, as a result, no firm conclusions can be made. An additional histidine mutant, H146I, was produced to confirm the results for H146A. A similar experiment using H146I showed that a benzene ring-like structure at position 146 is required for the allosteric ligand binding to occur
