60 research outputs found
The ins and outs of CO<sub>2</sub>
© 2015 The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3-. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3- use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3- active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3- can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3- pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3-. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation
Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data
Understanding the mechanisms of cell function and drug action is a major endeavor in
the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the
drug (i.e., selectivity and potency) and the specific signaling transduction network of the
host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomicbased
approach to identify drug effects by monitoring drug-induced topology alterations.
With the proposed method, drug effects are investigated under several conditions on a
cell-type specific signaling network. First, starting with a generic pathway made of
logical gates, we build a cell-type specific map by constraining it to fit 13 key
phopshoprotein signals under 55 experimental cases. Fitting is performed via a
formulation as an Integer Linear Program (ILP) and solution by standard ILP solvers; a
procedure that drastically outperforms previous fitting schemes. Then, knowing the cell
topology, we monitor the same key phopshoprotein signals under the presence of drug
and cytokines and we re-optimize the specific map to reveal the drug-induced topology
alterations. To prove our case, we make a pathway map for the hepatocytic cell line
HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal
Growth Factor Receptor (EGFR) and a non selective drug. We confirm effects easily
predictable from the drugs’ main target (i.e. EGFR inhibitors blocks the EGFR pathway)
but we also uncover unanticipated effects due to either drug promiscuity or the cell’s
specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib is
able to inhibit signaling downstream the Interleukin-1alpha (IL-1α) pathway; an effect
that cannot be extracted from binding affinity based approaches. Our method represents
an unbiased approach to identify drug effects on a small to medium size pathways and
is scalable to larger topologies with any type of signaling perturbations (small molecules,
3
RNAi etc). The method is a step towards a better picture of drug effects in pathways,
the cornerstone in identifying the mechanisms of drug efficacy and toxicity
Solubility and Permeation of Hydrogen Sulfide in Lipid Membranes
Hydrogen sulfide (H2S) is mainly known for its toxicity but has recently been shown to be produced endogenously in mammalian tissues and to be associated with physiological regulatory functions. To better understand the role of biomembranes in modulating its biological distribution and effects; we measured the partition coefficient of H2S in models of biological membranes. The partition coefficients were found to be 2.1±0.2, 1.9±0.5 and 2.0±0.6 in n-octanol, hexane and dilauroylphosphatidylcholine liposome membranes relative to water, respectively (25°C). This two-fold higher concentration of H2S in the membrane translates into a rapid membrane permeability, Pm = 3 cm s−1. We used a mathematical model in three dimensions to gain insight into the diffusion of total sulfide in tissues. This model shows that the sphere of action of sulfide produced by a single cell expands to involve more than 200 neighboring cells, and that the resistance imposed by lipid membranes has a significant effect on the diffusional spread of sulfide at pH 7.4, increasing local concentrations. These results support the role of hydrogen sulfide as a paracrine signaling molecule and reveal advantageous pharmacokinetic properties for its therapeutic applications
β-Carbonic Anhydrases Play a Role in Fruiting Body Development and Ascospore Germination in the Filamentous Fungus Sordaria macrospora
Carbon dioxide (CO2) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO3−) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into α-, β-, γ-, δ- and ζ-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of β-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding β-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Δcas1, Δcas2, and Δcas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Δcas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Δcas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO2 levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions
Repurposable Drugs That Interact with Steroid Responsive Gene Targets for Inner Ear Disease
Corticosteroids, oral or transtympanic, remain the mainstay for inner ear diseases characterized by hearing fluctuation or sudden changes in hearing, including sudden sensorineural hearing loss (SSNHL), Meniere’s disease (MD), and autoimmune inner ear disease (AIED). Despite their use across these diseases, the rate of complete recovery remains low, and results across the literature demonstrates significant heterogeneity with respect to the effect of corticosteroids, suggesting a need to identify more efficacious treatment options. Previously, our group has cross-referenced steroid-responsive genes in the cochlea with published single-cell and single-nucleus transcriptome datasets to demonstrate that steroid-responsive differentially regulated genes are expressed in spiral ganglion neurons (SGN) and stria vascularis (SV) cell types. These differentially regulated genes represent potential druggable gene targets. We utilized multiple gene target databases (DrugBank, Pharos, and LINCS) to identify orally administered, FDA approved medications that potentially target these genes. We identified 42 candidate drugs that have been shown to interact with these genes, with an emphasis on safety profile, and tolerability. This study utilizes multiple databases to identify drugs that can target a number of druggable genes in otologic disorders that are commonly treated with steroids, providing a basis for establishing novel repurposing treatment trials
The role of selective serotonin reuptake inhibitors and tricyclic antidepressants in addressing reduction of Meniere's disease burden: A scoping review
Abstract Objective To assess the effect of selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) in reducing vertigo, tinnitus, and hearing loss among patients with Meniere's disease (MD). Data Sources The following databases were utilized in this scoping review: Ovid Medline, PubMed‐NCBI, CINAHL, Cochrane Library, Web of Science, and Clinicaltrials.gov. Method Studies were identified through the following search phrases: “serotonin specific reuptake inhibitors” OR “tricyclic antidepressants” AND “Meniere's disease.” References from included manuscripts were examined for possible inclusion of additional studies. Results The literature search yielded 23 results, which were screened by three independent reviewers. Seventeen studies and three duplicates were excluded. An examination of references from the included studies yielded two additional publications. A total of four published studies assessing SSRIs and TCAs among 147 patients with MD were ultimately included. Four studies described significant reductions in vertigo attack frequency among patients treated with either SSRIs or TCAs compared to their pretreatment baseline. Three studies assessed the drugs' effects on hearing, of which none found a significant difference among patients treated with SSRIs or TCAs. One study found a significant decrease in patient‐reported tinnitus following treatment with TCAs or SSRIs compared to their pretreatment baseline. Conclusions Data exploring SSRIs and TCAs among patients with MD suggests that these medications may reduce the frequency of tinnitus and vertigo, although there was significant heterogeneity in outcome reporting. There remains a need for larger‐scale prospective studies that emphasize objective data to evaluate their effectiveness in reducing common MD symptoms
Reply to Missner et al. : Timescale for passive diffusion across bilayer lipid membranes
Correction: Pleiotrophin (PTN) Expression and Function in the Mouse Mammary Gland and Mammary Epithelial Cells
No facilitator required for membrane transport of hydrogen sulfide
Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H2S flux. To measure H2O and H2S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H2S ⇆ H+ + HS−) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H2S, PM,H2S ≥ 0.5 ± 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, PM,H2S remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H2S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H2S barrier indicates that H2S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels
Multikinase Abl/DDR/Src Inhibition Produces Optimal Effects for Tyrosine Kinase Inhibition in Neurodegeneration
- …
