7,471 research outputs found

    Pomeron Fusion and Central η\eta and η\eta' Meson Production

    Full text link
    The contribution of pomeron fusion to the cross section of η\eta and η\eta' productions in double-diffractive scattering has been calculated within the Donnachie-Landshoff model of pomeron. It is shown that the double pomeron exchange mechanism does not explain the full set of the recent data of WA102 Collaboration, though it might not be inconsistent with η\eta' productions.Comment: 6 pages, Latex, 3 figure

    The Distance and Age of the SNR Kes 73 and AXP 1E 1841-045

    Full text link
    We provide a new distance estimate to the supernova remnant (SNR) Kes 73 and its associated anomalous X-ray pulsar (AXP) 1E 1841-045. 21 cm HI images and HI absorption/ emission spectra from new VLA observations, and 13CO emission spectra of Kes 73 and two adjacent compact HII regions (G27.276+0.148 and G27.491+0.189) are analyzed. The HI images show prominent absorption features associated with Kes 73 and the HII regions. The absorption appears up to the tangent point velocity giving a lower distance limit to Kes 73 of 7.5 kpc, which has previously been given as the upper limit. Also, G27.276+0.148 and G27.491+0.189 are at the far kinematic distances of their radio recombination line velocities. There is prominent HI emission in the range 80--90 km/s for all three objects. The two HII regions show HI absorption at ~ 84 km/s, but there is no absorption in the Kes 73 absorption spectrum. This implies an upper distance limit of ~ 9.8 kpc to Kes 73. This corrected larger distance to Kes 73/ AXP 1E 1841-045 system leads to a refined age of the SNR of 500 to 1000 yr, and a ~ 50% larger AXP X-ray luminosity.Comment: 10 pages, 2 figures, ApJ, dol:10.1086/"529120

    Optimal design of injection mold for plastic bonded magnet

    Get PDF
    The optimal design of an injection mold for producing a stronger multipole magnet is carried out using the finite element method and the direct search method. It is shown that the maximum flux density in the cavity obtained by the optimal design is about 2.6 times higher than that of the initial shape determined empirically. 3-D analysis of the nonlinear magnetic field in the injection mold with complicated structure is also carried out. The calculated flux distribution on the cavity surface is in good agreement with the measured one</p

    Probing the stellar wind environment of Vela X-1 with MAXI

    Full text link
    Vela X-1 is among the best studied and most luminous accreting X-ray pulsars. The supergiant optical companion produces a strong radiatively-driven stellar wind, which is accreted onto the neutron star producing highly variable X-ray emission. A complex phenomenology, due to both gravitational and radiative effects, needs to be taken into account in order to reproduce orbital spectral variations. We have investigated the spectral and light curve properties of the X-ray emission from Vela X-1 along the binary orbit. These studies allow to constrain the stellar wind properties and its perturbations induced by the compact object. We took advantage of the All Sky Monitor MAXI/GSC data to analyze Vela X-1 spectra and light curves. By studying the orbital profiles in the 4104-10 and 102010-20 keV energy bands, we extracted a sample of orbital light curves (15{\sim}15% of the total) showing a dip around the inferior conjunction, i.e., a double-peaked shape. We analyzed orbital phase-averaged and phase-resolved spectra of both the double-peaked and the standard sample. The dip in the double-peaked sample needs NH2×1024N_H\sim2\times10^{24}\,cm2^{-2} to be explained by absorption solely, which is not observed in our analysis. We show how Thomson scattering from an extended and ionized accretion wake can contribute to the observed dip. Fitted by a cutoff power-law model, the two analyzed samples show orbital modulation of the photon index, hardening by 0.3{\sim}0.3 around the inferior conjunction, compared to earlier and later phases, hinting a likely inadequacy of this model. On the contrary, including a partial covering component at certain orbital phase bins allows a constant photon index along the orbital phases, indicating a highly inhomogeneous environment. We discuss our results in the framework of possible scenarios.Comment: 10 pages, 9 figures, accepted for publication in A&

    The role of secondary Reggeons in central meson production

    Full text link
    We estimate the contribution of f_2 trajectory exchange to the central \eta and \eta^\prime production. It is shown that secondary Reggeons may give a large contribution to processes of double diffractive meson production at high energy.Comment: 7 pages, Latex, 5 figure

    Annealing Effect for Supersolid Fraction in 4^4He

    Full text link
    We report on experimental confirmation of the non-classical rotational inertia (NCRI) in solid helium samples originally reported by Kim and Chan. The onset of NCRI was observed at temperatures below ~400 mK. The ac velocity for initiation of the NCRI suppression is estimated to be ~10 μ\mum/sec. After an additional annealing of the sample at T=1.8T= 1.8 K for 12 hours, ~ 10% relative increase of NCRI fraction was observed. Then after repeated annealing with the same conditions, the NCRI fraction was saturated. It differs from Reppy's observation on a low pressure solid sample.Comment: to be published in J. of Low Temp. Phys. (QFS2006 proceedings

    Semiconductor Thermal Neutron Detector

    Full text link
    The&nbsp; CdTe&nbsp; and&nbsp; GaN&nbsp; detector&nbsp; with&nbsp; a&nbsp; Gd&nbsp; converter&nbsp; have&nbsp; been developed&nbsp; and&nbsp; investigated&nbsp; as&nbsp; a&nbsp; neutron&nbsp; detector&nbsp; for neutron&nbsp; imaging.&nbsp; The&nbsp; fabricated&nbsp; Gd/CdTe&nbsp; detector&nbsp; with&nbsp; the&nbsp; 25&nbsp; mm&nbsp; thick&nbsp; Gd&nbsp; was&nbsp; designed&nbsp; on&nbsp; the&nbsp; basis&nbsp; of&nbsp; simulation results&nbsp; of&nbsp; thermal&nbsp; neutron&nbsp; detection&nbsp; efficiency&nbsp; and&nbsp; spatial&nbsp; resolution.&nbsp; The&nbsp; Gd/CdTe&nbsp; detector&nbsp; shows&nbsp; the&nbsp; detection&nbsp; of neutron&nbsp; capture&nbsp; gamma&nbsp; ray&nbsp; emission&nbsp; in&nbsp; the&nbsp; 155Gd(n,&nbsp; g)156Gd,&nbsp; 157Gd(n,&nbsp; g)158Gd&nbsp; and&nbsp; 113Cd(n,&nbsp; g)114Cd&nbsp; reactions&nbsp; and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly.&nbsp

    Spectra of Doubly Heavy Quark Baryons

    Get PDF
    Baryons containing two heavy quarks are treated in the Born-Oppenheimer approximation. Schr\"odinger equation for two center Coulomb plus harmonic oscillator potential is solved by the method of ethalon equation at large intercenter separations. Asymptotical expansions for energy term and wave function are obtained in the analytical form. Using those formulas, the energy spectra of doubly heavy baryons with various quark compositions are calculated analytically.Comment: 19 pages, latex2e, published at PRC61(2000)04520

    Panchromatic Observations of SN 2011dh Point to a Compact Progenitor Star

    Full text link
    We report the discovery and detailed monitoring of X-ray emission associated with the Type IIb SN 2011dh using data from the Swift and Chandra satellites, placing it among the best studied X-ray supernovae to date. We further present millimeter and radio data obtained with the SMA, CARMA, and EVLA during the first three weeks after explosion. Combining these observations with early optical photometry, we show that the panchromatic dataset is well-described by non-thermal synchrotron emission (radio/mm) with inverse Compton scattering (X-ray) of a thermal population of optical photons. In this scenario, the shock partition fractions deviate from equipartition by a factor, (e_e/e_B) ~ 30. We derive the properties of the shockwave and the circumstellar environment and find a shock velocity, v~0.1c, and a progenitor mass loss rate of ~6e-5 M_sun/yr. These properties are consistent with the sub-class of Type IIb SNe characterized by compact progenitors (Type cIIb) and dissimilar from those with extended progenitors (Type eIIb). Furthermore, we consider the early optical emission in the context of a cooling envelope model to estimate a progenitor radius of ~1e+11 cm, in line with the expectations for a Type cIIb SN. Together, these diagnostics are difficult to reconcile with the extended radius of the putative yellow supergiant progenitor star identified in archival HST observations, unless the stellar density profile is unusual. Finally, we searched for the high energy shock breakout pulse using X-ray and gamma-ray observations obtained during the purported explosion date range. Based on the compact radius of the progenitor, we estimate that the breakout pulse was detectable with current instruments but likely missed due to their limited temporal/spatial coverage. [Abridged]Comment: (27 pages, 5 figures, 2 tables, final version to appear in ApJ
    corecore