2,008 research outputs found
Scaling law for the heating of solar coronal loops
We report preliminary results from a series of numerical simulations of the
reduced magnetohydrodynamic equations, used to describe the dynamics of
magnetic loops in active regions of the solar corona. A stationary velocity
field is applied at the photospheric boundaries to imitate the driving action
of granule motions.
A turbulent stationary regime is reached, characterized by a broadband power
spectrum and heating rate levels compatible with the
heating requirements of active region loops. A dimensional analysis of the
equations indicates that their solutions are determined by two dimensionless
parameters: the Reynolds number and the ratio between the Alfven time and the
photospheric turnover time. From a series of simulations for different values
of this ratio, we determine how the heating rate scales with the physical
parameters of the problem, which might be useful for an observational test of
this model.Comment: 12 pages, 4 figures. Astrophysical Journal Letters (in press
Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer
Magnetic neutral points, where the magnitude of the magnetic field vanishes
locally, are potential locations for energy conversion in the solar corona. The
fact that the magnetic field is identically zero at these points suggests that
for the study of current sheet formation and of any subsequent resistive
dissipation phase, a finite beta plasma should be considered, rather than
neglecting the plasma pressure as has often been the case in the past. The
rapid dissipation of a finite current layer in non-force-free equilibrium is
investigated numerically, after the sudden onset of an anomalous resistivity.
The aim of this study is to determine how the energy is redistributed during
the initial diffusion phase, and what is the nature of the outward transmission
of information and energy. The resistivity rapidly diffuses the current at the
null point. The presence of a plasma pressure allows the vast majority of the
free energy to be transferred into internal energy. Most of the converted
energy is used in direct heating of the surrounding plasma, and only about 3%
is converted into kinetic energy, causing a perturbation in the magnetic field
and the plasma which propagates away from the null at the local fast
magnetoacoustic speed. The propagating pulses show a complex structure due to
the highly non-uniform initial state. It is shown that this perturbation
carries no net current as it propagates away from the null. The fact that,
under the assumptions taken in this paper, most of the magnetic energy released
in the reconnection converts internal energy of the plasma, may be highly
important for the chromospheric and coronal heating problem
Hall magnetohydrodynamics of partially ionized plasmas
The Hall effect arises in a plasma when electrons are able to drift with the
magnetic field but ions cannot. In a fully-ionized plasma this occurs for
frequencies between the ion and electron cyclotron frequencies because of the
larger ion inertia. Typically this frequency range lies well above the
frequencies of interest (such as the dynamical frequency of the system under
consideration) and can be ignored. In a weakly-ionized medium, however, the
Hall effect arises through a different mechanism -- neutral collisions
preferentially decouple ions from the magnetic field. This typically occurs at
much lower frequencies and the Hall effect may play an important role in the
dynamics of weakly-ionised systems such as the Earth's ionosphere and
protoplanetary discs.
To clarify the relationship between these mechanisms we develop an
approximate single-fluid description of a partially ionized plasma that becomes
exact in the fully-ionized and weakly-ionized limits. Our treatment includes
the effects of ohmic, ambipolar, and Hall diffusion. We show that the Hall
effect is relevant to the dynamics of a partially ionized medium when the
dynamical frequency exceeds the ratio of ion to bulk mass density times the
ion-cyclotron frequency, i.e. the Hall frequency. The corresponding length
scale is inversely proportional to the ion to bulk mass density ratio as well
as to the ion-Hall beta parameter.Comment: 11 page, 1 figure, typos removed, numbers in tables revised; accepted
for publication in MNRA
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
Analysis of a global Moreton wave observed on October 28, 2003
We study the well pronounced Moreton wave that occurred in as- sociation with
the X17.2 are/CME event of October 28, 2003. This Moreton wave is striking for
its global propagation and two separate wave centers, which implies that two
waves were launched simultane- ously. The mean velocity of the Moreton wave,
tracked within different sectors of propagation direction, lies in the range of
v ~ 900-1100 km/s with two sectors showing wave deceleration. The perturbation
profile analysis of the wave indicates amplitude growth followed by amplitude
weakening and broadening of the perturbation profile, which is con- sistent
with a disturbance first driven and then evolving into a freely propagating
wave. The EIT wavefront is found to lie on the same kinematical curve as the
Moreton wavefronts indicating that both are different signatures of the same
physical process. Bipolar coronal dim- mings are observed on the same opposite
East-West edges of the active region as the Moreton wave ignition centers. The
radio type II source, which is co-spatially located with the first wave front,
indicates that the wave was launched from an extended source region (& 60 Mm).
These findings suggest that the Moreton wave is initiated by the CME expanding
flanks.Comment: accepted to Ap
Patchy Reconnection in a Y-Type Current Sheet
We study the evolution of the magnetic field in a Y-type current sheet
subject to a brief, localized magnetic reconnection event. The reconnection
produces up- and down-flowing reconnected flux tubes which rapidly decelerate
when they hit the Y-lines and underlying magnetic arcade loops at the ends of
the current sheet. This localized reconnection outflow followed by a rapid
deceleration reproduces the observed behavior of post-CME downflowing coronal
voids. These simulations support the hypothesis that these observed coronal
downflows are the retraction of magnetic fields reconnected in localized
patches in the high corona.Comment: 4 pages, 3 figure
Elastic constants of nematic liquid crystals of uniaxial symmetry
We study in detail the influence of molecular interactions on the Frank
elastic constants of uniaxial nematic liquid crystals composed of molecules of
cylindrical symmetry. A brief summary of the status of theoretical development
for the elastic constants of nematics is presented. Considering a pair
potential having both repulsive and attractive parts numerical calculations are
reported for three systems MBBA, PAA and 8OCB. For these systems the
length-to-width ratio is estimated from the experimentally proposed
structure of the molecules. The repulsive interaction is represented by a
repulsion between hard ellipsoids of revolution (HER) and the attractive
potential is represented by the quadrupole and dispersion interactions. From
the numerical results we observe that in the density range of nematics the
contribution of the quadrupole and dispersion interactions are small as
compared to the repulsive HER interaction. The inclusion of attractive
interaction reduces the values of elastic constants ratios. The temperature
variation of elastic constants ratios are reported and compared with the
experimental values. A reasonably good agreement between theory and experiment
is observed
Paraphrases and summaries: A means of clarification or a vehicle for articulating a preferred version of student accounts?
The use of group discussions as a means to facilitate learning from experiences is well documented in adventure education literature. Priest and Naismith (1993) assert that the use of the circular discussion method, where the leader poses questions to the participants, is the most common form of facilitation in adventure education. This paper draws on transcripts of facilitation sessions to argue that the widely advocated practice of leader summaries or paraphrases of student responses in these sessions functions as a potential mechanism to control and sponsor particular knowledge(s). Using transcripts from recorded facilitation sessions the analysis focuses on how the leader paraphrases the students’ responses and how these paraphrases or ‘formulations’ function to modify or exclude particular aspects of the students’ responses. I assert that paraphrasing is not simply a neutral activity that merely functions to clarify a student response, it is a subtle means by which the leader of the session can, often inadvertently or unknowingly, alter the student’s reply with the consequence of favouring particular knowledge(s). Revealing the subtle work that leader paraphrases perform is of importance for educators who claim to provide genuine opportunities for students to learn from their experience
Evidence for a singularity in ideal magnetohydrodynamics: implications for fast reconnection
Numerical evidence for a finite-time singularity in ideal 3D
magnetohydrodynamics (MHD) is presented. The simulations start from two
interlocking magnetic flux rings with no initial velocity. The magnetic
curvature force causes the flux rings to shrink until they come into contact.
This produces a current sheet between them. In the ideal compressible
calculations, the evidence for a singularity in a finite time is that the
peak current density behaves like for a range of
sound speeds (or plasma betas). For the incompressible calculations consistency
with the compressible calculations is noted and evidence is presented that
there is convergence to a self-similar state. In the resistive reconnection
calculations the magnetic helicity is nearly conserved and energy is
dissipated.Comment: 4 pages, 4 figure
Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles
We investigate the formation of collisionless magnetized shocks triggered by the interaction between magnetized plasma flows and miniature-sized (order of plasma kinetic-scales) magnetic obstacles resorting to massively parallel, full particle-in-cell simulations, including the electron kinetics. The critical obstacle size to generate a compressed plasma region ahead of these objects is determined by independently varying the magnitude of the dipolar magnetic moment and the plasma magnetization. We find that the effective size of the obstacle depends on the relative orientation between the dipolar and plasma internal magnetic fields, and we show that this may be critical to form a shock in small-scale structures. We study the microphysics of the magnetopause in different magnetic field configurations in 2D and compare the results with full 3D simulations. Finally, we evaluate the parameter range where such miniature magnetized shocks can be explored in laboratory experiments
- …
