559 research outputs found
Rotating charged AdS solutions in quadratic gravity
We present a class of asymptotically anti-de Sitter charged rotating black
hole solutions in gravity in -dimensions, where . These solutions are nontrivial extensions of the solutions presented in
\cite{Lemos:1994xp} and \cite{Awad:2002cz} in the context of general
relativity. They are characterized by cylindrical, toroidal or flat horizons,
depending on global identifications. The static charged black hole
configurations obtained in \cite{Awad:2017tyz} are recovered as special cases
when the rotation parameters vanish. Similar to \cite{Awad:2017tyz} the static
black holes solutions have two different electric multipole terms in the
potential with related moments. Furthermore, these solutions have milder
singularities compared to their general relativity counterparts. Using the
conserved charges expressions obtained in \cite{Ulhoa:2013gca} and
\cite{Maluf:2008ug} we calculate the total mass/energy and the angular momentum
of these solutions.Comment: 11 pages, Version accepted in EPJ
Teleparallel Killing Vectors of the Einstein Universe
In this short paper we establish the definition of the Lie derivative of a
second rank tensor in the context of teleparallel theory of gravity and also
extend it for a general tensor of rank . This definition is then used to
find Killing vectors of the Einstein universe. It turns out that Killing
vectors of the Einstein universe in the teleparallel theory are the same as in
General Relativity.Comment: 9 pages, accepted for publication in Mod. Phys. Lett.
-dimensional charged Anti-de-Sitter black holes in gravity
We present a -dimensional charged Anti-de-Sitter black hole solutions in
gravity, where and . These solutions are
characterized by flat or cylindrical horizons. The interesting feature of these
solutions is the existence of inseparable electric monopole and quadrupole
terms in the potential which share related momenta, in contrast with most of
the known charged black hole solutions in General Relativity and its
extensions. Furthermore, these solutions have curvature singularities which are
milder than those of the known charged black hole solutions in General
Relativity and Teleparallel Gravity. This feature can be shown by calculating
some invariants of curvature and torsion tensors. Furthermore, we calculate the
total energy of these black holes using the energy-momentum tensor. Finally, we
show that these charged black hole solutions violate the first law of
thermodynamics in agreement with previous results.Comment: 11 Pages, will appear in JHE
Phase Portraits of general f(T) Cosmology
We use dynamical system methods to explore the general behaviour of
cosmology. In contrast to the standard applications of dynamical analysis, we
present a way to transform the equations into a one-dimensional autonomous
system, taking advantage of the crucial property that the torsion scalar in
flat FRW geometry is just a function of the Hubble function, thus the field
equations include only up to first derivatives of it, and therefore in a
general cosmological scenario every quantity is expressed only in terms
of the Hubble function. The great advantage is that for one-dimensional systems
it is easy to construct the phase space portraits, and thus extract information
and explore in detail the features and possible behaviours of cosmology.
We utilize the phase space portraits and we show that cosmology can
describe the universe evolution in agreement with observations, namely starting
from a Big Bang singularity, evolving into the subsequent thermal history and
the matter domination, entering into a late-time accelerated expansion, and
resulting to the de Sitter phase in the far future. Nevertheless,
cosmology can present a rich class of more exotic behaviours, such as the
cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake
and the Big Crunch, and it may exhibit various singularities, including the
non-harmful ones of type II and type IV. We study the phase space of three
specific viable models offering a complete picture. Moreover, we present
a new model of gravity that can lead to a universe in agreement with
observations, free of perturbative instabilities, and applying the Om(z)
diagnostic test we confirm that it is in agreement with the combination of
SNIa, BAO and CMB data at 1 confidence level.Comment: 39 pages, 12 figures, version published in JCA
On the energy of charged black holes in generalized dilaton-axion gravity
In this paper we calculate the energy distribution of some charged black
holes in generalized dilaton-axion gravity. The solutions correspond to charged
black holes arising in a Kalb-Ramond-dilaton background and some existing
non-rotating black hole solutions are recovered in special cases. We focus our
study to asymptotically flat and asymptotically non-flat types of solutions and
resort for this purpose to the M{\o}ller prescription. Various aspects of
energy are also analyzed.Comment: LaTe
Cosmological applications in Kaluza-Klein theory
The field equations of Kaluza-Klein (KK) theory have been applied in the
domain of cosmology. These equations are solved for a flat universe by taking
the gravitational and the cosmological constants as a function of time t. We
use Taylor's expansion of cosmological function, , up to the first
order of the time . The cosmological parameters are calculated and some
cosmological problems are discussed.Comment: 14 pages Latex, 5 figures, one table. arXiv admin note: text overlap
with arXiv:gr-qc/9805018 and arXiv:astro-ph/980526
Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes
This paper is devoted to discuss the energy-momentum for static axially
symmetric spacetimes in the framework of teleparallel theory of gravity. For
this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz,
Bergmann and Mller prescriptions. A comparison of the results shows
that the energy density is different but the momentum turns out to be constant
in each prescription. This is exactly similar to the results available in
literature using the framework of General Relativity. It is mentioned here that
Mller energy-momentum distribution is independent of the coupling
constant . Finally, we calculate energy-momentum distribution for the
Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.
Teleparallel Energy-Momentum Distribution of Spatially Homogeneous Rotating Spacetimes
The energy-momentum distribution of spatially homogeneous rotating spacetimes
in the context of teleparallel theory of gravity is investigated. For this
purpose, we use the teleparallel version of Moller prescription. It is found
that the components of energy-momentum density are finite and well-defined but
are different from General Relativity. However, the energy-momentum density
components become the same in both theories under certain assumptions. We also
analyse these quantities for some special solutions of the spatially
homogeneous rotating spacetimes.Comment: 12 pages, accepted for publication in Int. J. Theor. Phy
- …
