1,138 research outputs found

    Examining Training Motivations Among Public Health Workers

    Get PDF
    CONTEXT: As public health needs and priorities evolve, maintaining a trained public health workforce is critical to the success of public health efforts. Researchers have examined training needs in various contexts and subpopulations, but a nationally representative study of what motivates public health workers to seek out training has yet to be conducted. By understanding these motivations, public health agencies and policy makers can appeal to worker motivations in both training programs and organizational incentives. OBJECTIVE: The purpose of this article was to describe overall training motivations and identify patterns of training motivations among public health workers. This study also explored whether or not training needs differ across prevalent motivational patterns. DESIGN AND PARTICIPANTS: Using data from the 2017 Public Health Workforce Interests and Needs Survey (PH WINS), the study used latent class analysis (LCA) to identify motivational patterns and logistic regression to analyze associations with training needs. RESULTS: The most prominent motivation to seek training was personal growth (82.7% of respondents). LCA identified 4 motivational classes of public health workers: those motivated by organizational pressure and requirements (31.8%), those motivated indiscriminately by all factors (28.4%), those motivated primarily by personal growth (21.7%), and those motivated by organizational accommodations and supports (18.2%). Motivational class was not associated with indicating training needs in any of 8 training domains, nor was it associated with indicating any training need in any domain. CONCLUSIONS: Public health agencies should consider the different motivational classes present in the public health workforce. In particular, motivational classes that represent organizational choices suggest that public health agencies should both motivate workers with organizational requirements and pressure from managers and offer institutional support via paid travel and covered time for training

    Summer Camp as a Force for 21st Century Learning: Exploring Divergent Thinking and Activity Selection in a Residential Camp Setting

    Get PDF
    This study investigated change in divergent thinking (DT), an indicator of creative potential, at two gender-specific residential summer camps. Additionally, this study examined whether the change in DT varied by gender and by the type of activities campers self-select. Quantitative methods, using a quasi-experimental design was used in order to understand differences in camper scores. A total of 189 youth, 100 girls, 89 boys, between the ages of 9 and 14 years participated in the current study. Participants were administered a modified version of Guilford\u27s (1967) alternate uses task, a measure of DT, in which respondents were asked questions such as name all of the uses for a brick or name all of the uses for a plate before the camp session started, and then again at the end of the two-week session. Results indicate overall mean significant increases in DT across all scoring methods of fluency, flexibility, and originality. Participants who self-selected one or more artistic activities (e.g., drama, arts and crafts, dance) had significant increases on the tasks as opposed to participants who did not select any artistic activities (e.g., basketball, baseball, archery). Finally, girls significantly increased across all scoring methods, whereas boys slightly increased in fluency and flexibility but not in originality. These results indicate residential summer camp may provide a creativity benefit for youth in attendance, especially those who participate in certain activities. Practitioners should use this study to understand their own programming in terms of creativity, activity offerings, and camp cultur

    Kinematic Masses of Super Star Clusters in M82 from High-Resolution Near-Infrared Spectroscopy

    Full text link
    Using high-resolution (R~22,000) near-infrared (1.51 -- 1.75 microns) spectra from Keck Observatory, we measure the kinematic masses of two super star clusters in M82. Cross-correlation of the spectra with template spectra of cool evolved stars gives stellar velocity dispersions of sigma_r=15.9 +/- 0.8 km/s for MGG-9 and sigma_r=11.4 +/- 0.8 km/s for MGG-11. The cluster spectra are dominated by the light of red supergiants, and correlate most closely with template supergiants of spectral types M0 and M4.5. We fit King models to the observed profiles of the clusters in archival HST/NICMOS images to measure the half-light radii. Applying the virial theorem, we determine masses of 1.5 +/- 0.3 x 10^6 M_sun for MGG-9 and 3.5 +/- 0.7 x 10^5 M_sun for MGG-11. Population synthesis modelling suggests that MGG-9 is consistent with a standard initial mass function, whereas MGG-11 appears to be deficient in low-mass stars relative to a standard IMF. There is, however, evidence of mass segregation in the clusters, in which case the virial mass estimates would represent lower limits.Comment: 16 pages, 8 figures; ApJ, in pres

    A Spitzer Five-Band Analysis of the Jupiter-Sized Planet TrES-1

    Get PDF
    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by {\Spitzer}. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all {\Spitzer} eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 {\micron} (0.083 % {\pm} 0.024 %, 1270 {\pm} 110 K), 4.5 {\micron} (0.094 % {\pm} 0.024 %, 1126 {\pm} 90 K), 5.8 {\micron} (0.162 % {\pm} 0.042 %, 1205 {\pm} 130 K), 8.0 {\micron} (0.213 % {\pm} 0.042 %, 1190 {\pm} 130 K), and 16 {\micron} (0.33 % {\pm} 0.12 %, 1270 {\pm} 310 K) bands. The eclipse depths can be explained, within 1σ\sigma errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity e=0.0330.031+0.015e = 0.033^{+0.015}_{-0.031}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov-chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits (POET) pipeline. Benefits include higher photometric precision and \sim10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.Comment: 17 pages, Accepted for publication in Ap

    Increasing impacts of extreme droughts on vegetation productivity under climate change

    Get PDF
    Terrestrial gross primary production (GPP) is the basis of vegetation growth and food production globally1 and plays a critical role in regulating atmospheric CO2 through its impact on ecosystem carbon balance. Even though higher CO2 concentrations in future decades can increase GPP2, low soil water availability, heat stress and disturbances associated with droughts could reduce the benefits of such CO2 fertilization. Here we analysed outputs of 13 Earth system models to show an increasingly stronger impact on GPP by extreme droughts than by mild and moderate droughts over the twenty-first century. Due to a dramatic increase in the frequency of extreme droughts, the magnitude of globally averaged reductions in GPP associated with extreme droughts was projected to be nearly tripled by the last quarter of this century (2075–2099) relative to that of the historical period (1850–1999) under both high and intermediate GHG emission scenarios. By contrast, the magnitude of GPP reductions associated with mild and moderate droughts was not projected to increase substantially. Our analysis indicates a high risk of extreme droughts to the global carbon cycle with atmospheric warming; however, this risk can be potentially mitigated by positive anomalies of GPP associated with favourable environmental conditions

    Tailwater Recovery Systems for Irrigation: Benefit/Cost Analysis and Water Resource Conservation Technique in Northeast Arkansas

    Get PDF
    Water, one of the earth\u27s most vital resources, is particularly significant in the Arkansas Delta agricultural landscape. While both surface and groundwater are extremely important, 94% of the 26.9 billion L (7.1 billion gal) of water pumped daily from the Alluvial Aquifer is used for agricultural purposes. This common property is subsequently being depleted and sustainable conservation methods are being pursued. State and federal incentive programs encourage the use of a tailwater recovery system in agricultural irrigation. With the use of a complete recovery system, benefits include not only government incentives for wetland habitat, but reduced groundwater use and decreased agricultural runoff entering receiving streams. Costs incurred to the farm manager include crop loss due to reservoir storage, additional ditch construction, and the cost of a liftpump. Use of these systems offers not only economic benefits associated with aquifer preservation but also ecological benefits including reduced nutrient and sediment loading to receiving streams concurrent with ecosystem services. The overall benefit/cost analysis ofthese systems shows that the economic benefits of using a tailwater recovery system exceed the cost. Other positive features include the ecological benefits of surface water protection and ecosystem services

    Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017

    Get PDF
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low-mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ~3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ~4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ~0.15 microns or larger, or ~0.06 microns or smaller, with 2-sigma confidence.Comment: 16 pages, 12 figures, submitted to ApJ on October 8th, 201

    Montage: An Astronomical Image Mosaic Service for the NVO

    Get PDF
    Montage is a software system for generating astronomical image mosaics according to user-specified size, rotation, WCS-compliant projection and coordinate system, with background modeling and rectification capabilities. Its architecture has been described in the proceedings of ADASS XII and XIII (Berriman et al. 2003, 2004). It has been designed as a toolkit, with independent modules for image reprojection, background rectification and co-addition, and will run on workstations, clusters and grids. The primary limitation of Montage thus far has been in the projection algorithm. It uses a spherical trigonometry approach that is general at the expense of speed. The reprojection algorithm has now been made 30 times faster for commonly used tangent plane to tangent plane reprojections that cover up to several square degrees, through modification of a custom algorithm first derived for the Spitzer Space Telescope. This focus session will describe this algorithm, demonstrate the generation of mosaics in real time, and describe applications of the software. In particular, we will highlight one case study which shows how Montage is supporting the generation of science-grade mosaics of images measured with the Infrared Array Camera aboard the Spitzer Space Telescope

    Winter and Spring Water Quality of the Big Creek Watershed, Craighead County, Arkansas: Nutrients, Habitat, and Macroinvertebrates

    Get PDF
    The objective of this study was to assess the water quality of the Big Creek watershed during the winter and spring of 2002 by analyzing water physical, chemical variables, aquatic macro-invertebrates, and habitat. The Big Creek watershed, arising on Crowley\u27s Ridge in northeast Arkansas, is a small deltaic watershed and is an area of intense cultivation. Four stations, Big Creek Upper (BCU), Mud Creek (MC),Lost Creek (LC), and Big Creek Lower (BCL) were established for this study from Big Creek, Mud Creek and Lost Creek. Water samples were collected on a weekly basis for 10 weeks from January 2002 through March 2002. We analyzed these streams for temperature, pH, D.O., conductivity, TSS, chlorophyll- a, DOC, total N and P, total dissolved N and P, nitrate, ammonium, and soluble reactive phosphorus. During this time period, we also sampled aquatic macroinvertebrates and assessed stream habitat according to USEPA rapid bioassessment protocols. Overall, nutrients and TSS were high, pH fluctuated from 5.8 to 7.8, and D.O. was moderate to high, ranging from 6.75 to 13.24 mg/L. Generally, physical and chemical water variables were correlated with changes in stream discharge. For a 20-jab dip-net sample, macroinvertebrate species richness ranged from 9 to 23 taxa, while abundance ranged from 38 to 209 individuals per station. Physical habitat index scores ranged from 75 to 104 (maximum of 200) indicating marginal physical habitat. We report that this watershed has high concentrations of nutrients and suspended solids during the winter and spring wet season and that the macroinvertebrate communities are influenced by stream conditions, including marginal physical habitat
    corecore