560 research outputs found

    Optical variability of the strong-lined and X-ray bright source 1WGA J0447.9-0322

    Get PDF
    We present the historic light curve of 1WGA J0447.9-0322, spanning the time interval from 1962 to 1991, built using the Asiago archive plates. The source shows small fluctuations of about 0.3 mag around B=16 until 1986 and a fast dimming of its average level by about 0.5 mag after that date, again with small short term variations. The variability pattern is within the values shown by other QSOs with long term monitoring, notwithstanding its high X-ray/optical ratio. We present also its overall SED using literature data and recent UV-optical SWIFT observations.Comment: 17 pages, 4 figures, accepted by The Astronomical Journal. Table 2 available upon reques

    S5 1803+78 Revisited

    Get PDF
    We report on our optical monitoring of the BL Lac object S5 1803+78 from 1996 to 2011. The source showed no clear periodicity, but a time scale of about 1 300 days between major flares is possibly present. No systematic trend of the color index with flux variations is evident, at variance with other BL Lacs. In one flare, however, the source was bluer in the rising phase and redder in the falling one. Two ?-ray flares were detected by Fermi-GST during our monitoring: on the occasion of only one of them we found simultaneous optical brightening. A one-zone Synchrotron Self Compton (SSC) model appears too simple to explain the source behavior

    A New Fast Silicon Photomultiplier Photometer

    Get PDF
    The realization of low-cost instruments with high technical performance is a goal which deserves some efforts in an epoch of fast technological developments: indeed such instruments can be easily reproduced and therefore allow to open new research programs in several Observatories. We realized a fast optical photometer based on the SiPM technology, using commercially available modules. Using low-cost components we have developed a custom electronic chain to extract the signal produced by a commercial MPPC module produced by Hamamatsu, in order to obtain sub millisecond sampling of the light curve of astronomical sources, typically pulsars. In the early February 2011 we observed the Crab Pulsar at the Cassini telescope with our prototype photometer, deriving its period, power spectrum and shape of its light curve in very good agreement with the results obtained in the past with other instruments.Comment: Accepted for Publications of the Astronomical Society of Pacific (PASP), 8 pages, 8 figure

    Optical and Radio monitoring of S5 1803+74

    Get PDF
    The optical (BVRI) and radio (8.4 GHz) light curves of S5 1803+784 on a time span of nearly 6 years are presented and discussed. The optical light curve showed an overall variation greater than 3 mag, and the largest changes occured in three strong flares. No periodicity was found in the light curve on time scales up to a year. The variability in the radio band is very different, and shows moderate oscillations around an average constant flux density rather than relevant flares, with a maximum amplitude of \sim30%, without a simultaneous correspondence between optical and radio luminosity. The optical spectral energy distribution was always well fitted by a power law. The spectral index shows small variations and there is indication of a positive correlation with the source luminosity. Possible explanations of the source behaviour are discussed in the framework of current models.Comment: 25 pages, 12 figure

    J004457+4123 (Sharov 21): not a remarkable nova in M31 but a background quasar with a spectacular UV flare

    Full text link
    We announce the discovery of a quasar behind the disk of M31, which was previously classified as a remarkable nova in our neighbour galaxy. The paper is primarily aimed at the outburst of J004457+4123 (Sharov 21), with the first part focussed on the optical spectroscopy and the improvement in the photometric database. Both the optical spectrum and the broad band spectral energy distribution of Sharov 21 are shown to be very similar to that of normal, radio-quiet type 1 quasars. We present photometric data covering more than a century and resulting in a long-term light curve that is densely sampled over the past five decades. The variability of the quasar is characterized by a ground state with typical fluctuation amplitudes of ~0.2 mag around B~20.5, superimposed by a singular flare of ~2 yr duration (observer frame) with the maximum at 1992.81 where the UV flux has increased by a factor of ~20. The total energy in the flare is at least three orders of magnitudes higher than the radiated energy of the most luminous supernovae, provided that it comes from an intrinsic process and the energy is radiated isotropically. The profile of the flare light curve appears to be in agreement with the standard predictions for a stellar tidal disruption event where a ~10 M_sun giant star was shredded in the tidal field of a ~2...5 10^8 M_sun black hole. The short fallback time derived from the light curve requires an ultra-close encounter where the pericentre of the stellar orbit is deep within the tidal disruption radius. Gravitational microlensing provides an alternative explanation, though the probability of such a high amplification event is very low.Comment: Accepted for publication in Astronomy and Astrophysics, 14 pages, 11 figure

    GR 290 (Romano's Star): 2. Light history and evolutionary state

    Get PDF
    We have built the historical light curve of the luminous variable GR 290 back to 1901, from old observations of the star found in several archival plates of M 33. These old recordings together with published and new data show that for at least half a century the star was in a low luminosity state, with B ~18. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing towards the 1992-1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands, and that the B-V color index has been constant within +/-0.1 m despite the 1.5m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992-94, was equivalent to late-B type, while, during 2002-2014, it has varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the HeII 4686 A emission line, the strength of the 4600-4700 A lines blend and the spectral type. From a model analysis of the spectra collected during the whole 2002-2014 period we find that the Rosseland radius R_{2/3}, changed between the minimum and maximum luminosity phases by a factor of 3, while T_eff varied between about 33,000 K and 23,000 K. The bolometric luminosity of the star was not constant, but increased by a factor of ~1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. In the light of current evolutionary models of very massive stars, we find that GR 290 has evolved from a ~60 M_Sun progenitor star and should have an age of about 4 million years. We argue that it has left the LBV stage and is moving to a Wolf-Rayet stage of late nitrogen spectral type.Comment: Accepted on The Astronomical Journal, 10 figures. Replaced because the previous uploaded file was that without the final small corrections requested by the refere
    corecore