83 research outputs found
Purification and characterization of recombinant expressed apple allergen Mal d 1
Mal d 1 is the primary apple allergen in northern Europe. To explain the differences in the allergenicity of apple varieties, it is essential to study its properties and interaction with other phytochemicals, which might modulate the allergenic potential. Therefore, an optimized production route followed by an unsophisticated purification step for Mal d 1 and respective mutants is desired to produce sufficient amounts. We describe a procedure for the transformation of the plasmid in competent E. coli cells, protein expression and rapid one-step purification. r-Mal d 1 with and without a polyhistidine-tag are purified by immobilized metal ion affinity chromatography (IMAC) and fastprotein liquid chromatography (FPLC) using a high-resolution anion-exchange column, respectively. Purity is estimated by SDS-PAGE using an image-processing program (Fiji). For both mutants an appropriate yield of r-Mal d 1 with purity higher than 85% is achieved. The allergen is characterized after tryptic in gel digestion by peptide analyses using HPLC-MS/MS. Secondary structure elements are calculated based on CD-spectroscopy and the negligible impact of the polyhistidine-tag on the folding is confirmed. The formation of dimers is proved by mass spectrometry and reduction by DTT prior to SDS-PAGE. Furthermore, the impact of the freeze and thawing process, freeze drying and storage on dimer formation is investigated
Epigenetic Drugs Can Stimulate Metastasis through Enhanced Expression of the Pro-Metastatic Ezrin Gene
Ezrin has been reported to be upregulated in many tumors and to participate in metastatic progression. No study has addressed epigenetic modification in the regulation of Ezrin gene expression, the importance of which is unknown. Here, we report that highly metastatic rhabdomyosarcoma (RMS) cells with high levels of Ezrin have elevated acetyl-H3-K9 and tri-methyl-H3-K4 as well as reduced DNA methylation at the Ezrin gene promoter. Conversely, poorly metastatic RMS cells with low levels of Ezrin have reduced acetyl-H3-K9 and elevated methylation. Thus epigenetic covalent modifications to histones within nucleosomes of the Ezrin gene promoter are linked to Ezrin expression, which in fact can be regulated by epigenetic mechanisms. Notably, treatment with histone deacetylase (HDAC) inhibitors or DNA demethylating agents could restore Ezrin expression and stimulate the metastatic potential of poorly metastatic RMS cells characterized by low Ezrin levels. However, the ability of epigenetic drugs to stimulate metastasis in RMS cells was inhibited by expression of an Ezrin-specific shRNA. Our data demonstrate the potential risk associated with clinical application of broadly acting covalent epigenetic modifiers, and highlight the value of combination therapies that include agents specifically targeting potent pro-metastatic genes
The Analysis of Coordinated Effects in EU Merger Control: Where Do We Stand after Sony/BMG and Impala?
The recent Impala Judgment by the CFI on the Sony/BMG Decision by the Commission represents the most important ruling on collective dominance since Airtours. We review both the Decision and the Judgment and derive implications for the institutional and substantive development of EU Merger Control. Firstly, Impala introduces an ambitious symmetric standard of proof for prohibition and clearance decisions by the Commission. While alleviating fears of an increasing number of false positives in the aftermath of Airtours, this entails the problem of how to deal with cases in which neither the existence, nor the absence of anticompetitive effects can be proven to the required standard. Secondly, the ongoing process of increasing the role of third parties in European Merger Control is fuelled. Thirdly, Impala has the potential to herald a comeback of coordinated effects analysis, further precising the conditions for establishing this kind of anticompetitive effect. Additionally, given the characteristics of the music industry, we criticise a lack of in-depth economic analysis of non-price competition issues, such as innovations and product diversity
Aberrant DNA Methylation of Matrix Remodeling and Cell Adhesion Related Genes in Pterygium
10.1371/journal.pone.0014687PLoS ONE62
Transketolase catalysed upgrading of l-arabinose: the one-step stereoselective synthesis of l-gluco-heptulose
Conversion of biomass using biocatalysis is likely to become a technology that contributes significantly to the future production of chemical building blocks, materials and transport fuels. Here the synthesis of a value-added chemical from L-arabinose, a major component of the carbohydrates in sugar beet pulp (SBP), in a concise and sustainable manner has been investigated. Biocatalytic conversions using transketolase variants have been developed for the efficient, scalable synthesis of a rare naturally occurring ketoheptose, L-gluco-heptulose, from L-arabinose. New active E. coli TK mutants that readily accept L-arabinose were identified using a versatile colorimetric screening assay and the reaction was performed on a preparative scale
Structural and functional insights into asymmetric enzymatic dehydration of alkenols
The asymmetric dehydration of alcohols is an important process for the direct synthesis of alkenes. We report the structure and substrate specificity of the bifunctional linalool dehydratase isomerase (LinD) from the bacterium Castellaniella defragrans that catalyzes in nature the hydration of β-myrcene to linalool and the subsequent isomerization to geraniol. Enzymatic kinetic resolutions of truncated and elongated aromatic and aliphatic tertiary alcohols (C5-C15) that contain a specific signature motif demonstrate the broad substrate specificity of LinD. The three-dimensional structure of LinD from Castellaniella defragrans revealed a pentamer with active sites at the protomer interfaces. Furthermore, the structure of LinD in complex with the product geraniol provides initial mechanistic insights into this bifunctional enzyme. Site-directed mutagenesis confirmed active site amino acid residues essential for its dehydration and isomerization activity. These structural and mechanistic insights facilitate the development of hydrating catalysts, enriching the toolbox for novel bond-forming biocatalysis
Auswirkung der Expression des rezessiven Glomerulosklerose-Gens Mpv17 auf die Expression und Aktivität der Matrixmetallo-Proteinase MMP-2
- …
