172 research outputs found

    Non-commutative holonomies in 2+1 LQG and Kauffman's brackets

    Full text link
    We investigate the canonical quantization of 2+1 gravity with {\Lambda} > 0 in the canonical framework of LQG. A natural regularization of the constraints of 2+1 gravity can be defined in terms of the holonomies of A\pm = A \PM \surd{\Lambda}e, where the SU(2) connection A and the triad field e are the conjugated variables of the theory. As a first step towards the quantization of these constraints we study the canonical quantization of the holonomy of the connection A_{\lambda} = A + {\lambda}e acting on spin network links of the kinematical Hilbert space of LQG. We provide an explicit construction of the quantum holonomy operator, exhibiting a close relationship between the action of the quantum holonomy at a crossing and Kauffman's q-deformed crossing identity. The crucial difference is that the result is completely described in terms of standard SU(2) spin network states.Comment: 4 pages; Proceedings of Loops'11, Madrid, to appear in Journal of Physics: Conference Series (JPCS

    Three dimensional loop quantum gravity: coupling to point particles

    Full text link
    We consider the coupling between three dimensional gravity with zero cosmological constant and massive spinning point particles. First, we study the classical canonical analysis of the coupled system. Then, we go to the Hamiltonian quantization generalizing loop quantum gravity techniques. We give a complete description of the kinematical Hilbert space of the coupled system. Finally, we define the physical Hilbert space of the system of self-gravitating massive spinning point particles using Rovelli's generalized projection operator which can be represented as a sum over spin foam amplitudes. In addition we provide an explicit expression of the (physical) distance operator between two particles which is defined as a Dirac observable.Comment: Typos corrected and references adde

    On the Physical Hilbert Space of Loop Quantum Cosmology

    Full text link
    In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology

    Cosmological Plebanski theory

    Full text link
    We consider the cosmological symmetry reduction of the Plebanski action as a toy-model to explore, in this simple framework, some issues related to loop quantum gravity and spin-foam models. We make the classical analysis of the model and perform both path integral and canonical quantizations. As for the full theory, the reduced model admits two types of classical solutions: topological and gravitational ones. The quantization mixes these two solutions, which prevents the model to be equivalent to standard quantum cosmology. Furthermore, the topological solution dominates at the classical limit. We also study the effect of an Immirzi parameter in the model.Comment: 20 page

    Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons

    Full text link
    A detailed analysis of the spherically symmetric isolated horizon system is performed in terms of the connection formulation of general relativity. The system is shown to admit a manifestly SU(2) invariant formulation where the (effective) horizon degrees of freedom are described by an SU(2) Chern-Simons theory. This leads to a more transparent description of the quantum theory in the context of loop quantum gravity and modifications of the form of the horizon entropy.Comment: 30 pages, 1 figur

    Degenerate Plebanski Sector and Spin Foam Quantization

    Full text link
    We show that the degenerate sector of Spin(4) Plebanski formulation of four-dimensional gravity is exactly solvable and describes covariantly embedded SU(2) BF theory. This fact ensures that its spin foam quantization is given by the SU(2) Crane-Yetter model and allows to test various approaches of imposing the simplicity constraints. Our analysis strongly suggests that restricting representations and intertwiners in the state sum for Spin(4) BF theory is not sufficient to get the correct vertex amplitude. Instead, for a general theory of Plebanski type, we propose a quantization procedure which is by construction equivalent to the canonical path integral quantization and, being applied to our model, reproduces the SU(2) Crane-Yetter state sum. A characteristic feature of this procedure is the use of secondary second class constraints on an equal footing with the primary simplicity constraints, which leads to a new formula for the vertex amplitude.Comment: 34 pages; changes in the abstract and introduction, a few references adde

    A Note on B-observables in Ponzano-Regge 3d Quantum Gravity

    Full text link
    We study the insertion and value of metric observables in the (discrete) path integral formulation of the Ponzano-Regge spinfoam model for 3d quantum gravity. In particular, we discuss the length spectrum and the relation between insertion of such B-observables and gauge fixing in the path integral.Comment: 17 page

    Regularized Hamiltonians and Spinfoams

    Full text link
    We review a recent proposal for the regularization of the scalar constraint of General Relativity in the context of LQG. The resulting constraint presents strengths and weaknesses compared to Thiemann's prescription. The main improvement is that it can generate the 1-4 Pachner moves and its matrix elements contain 15j Wigner symbols, it is therefore compatible with the spinfoam formalism: the drawback is that Thiemann anomaly free proof is spoiled because the nodes that the constraint creates have volume.Comment: 4 pages, based on a talk given at Loops '11 in Madrid, to appear in Journal of Physics: Conference Series (JPCS
    corecore