172 research outputs found
Non-commutative holonomies in 2+1 LQG and Kauffman's brackets
We investigate the canonical quantization of 2+1 gravity with {\Lambda} > 0
in the canonical framework of LQG. A natural regularization of the constraints
of 2+1 gravity can be defined in terms of the holonomies of A\pm = A \PM
\surd{\Lambda}e, where the SU(2) connection A and the triad field e are the
conjugated variables of the theory. As a first step towards the quantization of
these constraints we study the canonical quantization of the holonomy of the
connection A_{\lambda} = A + {\lambda}e acting on spin network links of the
kinematical Hilbert space of LQG. We provide an explicit construction of the
quantum holonomy operator, exhibiting a close relationship between the action
of the quantum holonomy at a crossing and Kauffman's q-deformed crossing
identity. The crucial difference is that the result is completely described in
terms of standard SU(2) spin network states.Comment: 4 pages; Proceedings of Loops'11, Madrid, to appear in Journal of
Physics: Conference Series (JPCS
Three dimensional loop quantum gravity: coupling to point particles
We consider the coupling between three dimensional gravity with zero
cosmological constant and massive spinning point particles. First, we study the
classical canonical analysis of the coupled system. Then, we go to the
Hamiltonian quantization generalizing loop quantum gravity techniques. We give
a complete description of the kinematical Hilbert space of the coupled system.
Finally, we define the physical Hilbert space of the system of self-gravitating
massive spinning point particles using Rovelli's generalized projection
operator which can be represented as a sum over spin foam amplitudes. In
addition we provide an explicit expression of the (physical) distance operator
between two particles which is defined as a Dirac observable.Comment: Typos corrected and references adde
On the Physical Hilbert Space of Loop Quantum Cosmology
In this paper we present a model of Riemannian loop quantum cosmology with a
self-adjoint quantum scalar constraint. The physical Hilbert space is
constructed using refined algebraic quantization. When matter is included in
the form of a cosmological constant, the model is exactly solvable and we show
explicitly that the physical Hilbert space is separable consisting of a single
physical state. We extend the model to the Lorentzian sector and discuss
important implications for standard loop quantum cosmology
Cosmological Plebanski theory
We consider the cosmological symmetry reduction of the Plebanski action as a
toy-model to explore, in this simple framework, some issues related to loop
quantum gravity and spin-foam models. We make the classical analysis of the
model and perform both path integral and canonical quantizations. As for the
full theory, the reduced model admits two types of classical solutions:
topological and gravitational ones. The quantization mixes these two solutions,
which prevents the model to be equivalent to standard quantum cosmology.
Furthermore, the topological solution dominates at the classical limit. We also
study the effect of an Immirzi parameter in the model.Comment: 20 page
Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons
A detailed analysis of the spherically symmetric isolated horizon system is
performed in terms of the connection formulation of general relativity. The
system is shown to admit a manifestly SU(2) invariant formulation where the
(effective) horizon degrees of freedom are described by an SU(2) Chern-Simons
theory. This leads to a more transparent description of the quantum theory in
the context of loop quantum gravity and modifications of the form of the
horizon entropy.Comment: 30 pages, 1 figur
Degenerate Plebanski Sector and Spin Foam Quantization
We show that the degenerate sector of Spin(4) Plebanski formulation of
four-dimensional gravity is exactly solvable and describes covariantly embedded
SU(2) BF theory. This fact ensures that its spin foam quantization is given by
the SU(2) Crane-Yetter model and allows to test various approaches of imposing
the simplicity constraints. Our analysis strongly suggests that restricting
representations and intertwiners in the state sum for Spin(4) BF theory is not
sufficient to get the correct vertex amplitude. Instead, for a general theory
of Plebanski type, we propose a quantization procedure which is by construction
equivalent to the canonical path integral quantization and, being applied to
our model, reproduces the SU(2) Crane-Yetter state sum. A characteristic
feature of this procedure is the use of secondary second class constraints on
an equal footing with the primary simplicity constraints, which leads to a new
formula for the vertex amplitude.Comment: 34 pages; changes in the abstract and introduction, a few references
adde
A Note on B-observables in Ponzano-Regge 3d Quantum Gravity
We study the insertion and value of metric observables in the (discrete) path
integral formulation of the Ponzano-Regge spinfoam model for 3d quantum
gravity. In particular, we discuss the length spectrum and the relation between
insertion of such B-observables and gauge fixing in the path integral.Comment: 17 page
Regularized Hamiltonians and Spinfoams
We review a recent proposal for the regularization of the scalar constraint
of General Relativity in the context of LQG. The resulting constraint presents
strengths and weaknesses compared to Thiemann's prescription. The main
improvement is that it can generate the 1-4 Pachner moves and its matrix
elements contain 15j Wigner symbols, it is therefore compatible with the
spinfoam formalism: the drawback is that Thiemann anomaly free proof is spoiled
because the nodes that the constraint creates have volume.Comment: 4 pages, based on a talk given at Loops '11 in Madrid, to appear in
Journal of Physics: Conference Series (JPCS
- …
