2,839 research outputs found
Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects
Using a one-dimensional jellium model and standard beam theory we calculate
the spring constant of a vibrating nanowire cantilever. By using the asymptotic
energy eigenvalues of the standing electron waves over the nanometer-sized
cross-section area, the change in the grand canonical potential is calculated
and hence the force and the spring constant. As the wire is bent more electron
states fits in its cross section. This has an impact on the spring"constant"
which oscillates slightly with the bending of the wire. In this way we obtain
an amplitude-dependent resonance frequency of the oscillations that should be
detectable.Comment: 6 pages, 5 figure
Calibration of the TWIST high-precision drift chambers
A method for the precise measurement of drift times for the high-precision
drift chambers used in the TWIST detector is described. It is based on the
iterative correction of the space-time relationships by the time residuals of
the track fit, resulting in a measurement of the effective drift times. The
corrected drift time maps are parametrised individually for each chamber using
spline functions. Biases introduced by the reconstruction itself are taken into
account as well, making it necessary to apply the procedure to both data and
simulation. The described calibration is shown to improve the reconstruction
performance and to extend significantly the physics reach of the experiment.Comment: 8 pages, 5 figure
Rare Earth and High Field Strength Element Partitioning Between Iron-Rich Clinopyroxenes and Felsic Liquids
Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in 8-fold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g. Wood and Blundy, 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and -oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48 to 59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2 to 16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6 to 32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in 6-fold coordination is substantially greater than that of Mg2+, hence we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between 8-fold Ca sites and 6-fold Fe-Mg sites such that Yb and Lu exist dominantly in 6-fold coordination. We also outline a REE-based method of identifying pyroxene-melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in 8-fold coordination in pyroxene.
Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y-Ho, Zr-Hf, and Nb-Ta
Recommended from our members
Early symptoms and sensations as predictors of lung cancer: a machine learning multivariate model.
The aim of this study was to identify a combination of early predictive symptoms/sensations attributable to primary lung cancer (LC). An interactive e-questionnaire comprised of pre-diagnostic descriptors of first symptoms/sensations was administered to patients referred for suspected LC. Respondents were included in the present analysis only if they later received a primary LC diagnosis or had no cancer; and inclusion of each descriptor required ≥4 observations. Fully-completed data from 506/670 individuals later diagnosed with primary LC (n = 311) or no cancer (n = 195) were modelled with orthogonal projections to latent structures (OPLS). After analysing 145/285 descriptors, meeting inclusion criteria, through randomised seven-fold cross-validation (six-fold training set: n = 433; test set: n = 73), 63 provided best LC prediction. The most-significant LC-positive descriptors included a cough that varied over the day, back pain/aches/discomfort, early satiety, appetite loss, and having less strength. Upon combining the descriptors with the background variables current smoking, a cold/flu or pneumonia within the past two years, female sex, older age, a history of COPD (positive LC-association); antibiotics within the past two years, and a history of pneumonia (negative LC-association); the resulting 70-variable model had accurate cross-validated test set performance: area under the ROC curve = 0.767 (descriptors only: 0.736/background predictors only: 0.652), sensitivity = 84.8% (73.9/76.1%, respectively), specificity = 55.6% (66.7/51.9%, respectively). In conclusion, accurate prediction of LC was found through 63 early symptoms/sensations and seven background factors. Further research and precision in this model may lead to a tool for referral and LC diagnostic decision-making
CARS Temperature Measurements in a Hypersonic Propulsion Test Facility
Nonintrusive diagnostic measurements were performed in the supersonic reacting flow of the Hypersonic Propulsion Test Cell 2 at NASA-Langley. A Coherent Anti-stokes Raman Spectroscopy (CARS) system was assembled specifically for the test cell environment. System design considerations were: (1) test cell noise and vibration; (2) contamination from flow field or atmospheric borne dust; (3) unwanted laser or electrically induced combustion (inside or outside the duct); (4) efficient signal collection; (5) signal splitting to span the wide dynamic range present throughout the flow field; (6) movement of the sampling volume in the flow; and (7) modification of the scramjet model duct to permit optical access to the reacting flow with the CARS system. The flow in the duct was a nominal Mach 2 flow with static pressure near one atmosphere. A single perpendicular injector introduced hydrogen into the flow behind a rearward facing step. CARS data was obtained in three planes downstream of the injection region. At least 20 CARS data points were collected at each of the regularly spaced sampling locations in each data plane. Contour plots of scramjet combustor static temperature in a reacting flow region are presented
Muon Catalyzed Fusion in 3 K Solid Deuterium
Muon catalyzed fusion in deuterium has traditionally been studied in gaseous
and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used
to study the fusion reaction rates in the solid phase of D_2 at a target
temperature of 3 K. Products of two distinct branches of the reaction were
observed; neutrons by a liquid organic scintillator, and protons by a silicon
detector located inside the target system. The effective molecular formation
rate from the upper hyperfine state of and the hyperfine transition
rate have been measured: , and .
The molecular formation rate is consistent with other recent measurements, but
not with the theory for isolated molecules. The discrepancy may be due to
incomplete thermalization, an effect which was investigated by Monte Carlo
calculations. Information on branching ratio parameters for the s and p wave
d+d nuclear interaction has been extracted.Comment: 19 pages, 11 figures, submitted to PRA Feb 20, 199
CFA2: a Context-Free Approach to Control-Flow Analysis
In a functional language, the dominant control-flow mechanism is function
call and return. Most higher-order flow analyses, including k-CFA, do not
handle call and return well: they remember only a bounded number of pending
calls because they approximate programs with control-flow graphs. Call/return
mismatch introduces precision-degrading spurious control-flow paths and
increases the analysis time. We describe CFA2, the first flow analysis with
precise call/return matching in the presence of higher-order functions and tail
calls. We formulate CFA2 as an abstract interpretation of programs in
continuation-passing style and describe a sound and complete summarization
algorithm for our abstract semantics. A preliminary evaluation shows that CFA2
gives more accurate data-flow information than 0CFA and 1CFA.Comment: LMCS 7 (2:3) 201
- …
