1,633 research outputs found
An Infrared Camera for Leuschner Observatory and the Berkeley Undergraduate Astronomy Lab
We describe the design, fabrication, and operation of an infrared camera
which is in use at the 30-inch telescope of the Leuschner Observatory. The
camera is based on a Rockwell PICNIC 256 x 256 pixel HgCdTe array, which is
sensitive from 0.9-2.5 micron. The primary purpose of this telescope is for
undergraduate instruction. The cost of the camera has been minimized by using
commercial parts whereever practical. The camera optics are based on a modified
Offner relay which forms a cold pupil where stray thermal radiation from the
telescope is baffled. A cold, six-position filter wheel is driven by a
cryogenic stepper motor, thus avoiding any mechanical feed throughs. The array
control and readout electronics are based on standard PC cards; the only custom
component is a simple interface card which buffers the clocks and amplifies the
analog signals from the array.Comment: 13 pages, 17 figures. Submitted to Publications of the Astronomical
Society of the Pacific: 2001 Jan 10, Accepted 2001 Jan 1
An Alternative Accurate Tracer of Molecular Clouds: The "-Factor"
We explore the utility of CI as an alternative high-fidelity gas mass tracer
for Galactic molecular clouds. We evaluate the X-factor for the 609
m carbon line, the analog of the CO X-factor, which is the ratio of the
H column density to the integrated CO(1-0) line intensity. We use
3D-PDR to post-process hydrodynamic simulations of turbulent, star-forming
clouds. We compare the emission of CI and CO for model clouds irradiated by 1
and 10 times the average background and demonstrate that CI is a comparable or
superior tracer of the molecular gas distribution for column densities up to cm. Our results hold for both reduced and full chemical
networks. For our fiducial Galactic cloud we derive an average of
cmKkms and of cmKkms.Comment: 5 pages, 4 figures, 1 table, accepted to MNRAS Letter
The importance of episodic accretion for low-mass star formation
A star acquires much of its mass by accreting material from a disc. Accretion
is probably not continuous but episodic. We have developed a method to include
the effects of episodic accretion in simulations of star formation. Episodic
accretion results in bursts of radiative feedback, during which a protostar is
very luminous, and its surrounding disc is heated and stabilised. These bursts
typically last only a few hundred years. In contrast, the lulls between bursts
may last a few thousand years; during these lulls the luminosity of the
protostar is very low, and its disc cools and fragments. Thus, episodic
accretion enables the formation of low-mass stars, brown dwarfs and
planetary-mass objects by disc fragmentation. If episodic accretion is a common
phenomenon among young protostars, then the frequency and duration of accretion
bursts may be critical in determining the low-mass end of the stellar initial
mass function.Comment: To appear in the Astrophysical Journal. Press release available at:
http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/News/News.html Full
resolution paper available at http://stacks.iop.org/0004-637X/730/3
The Cop Number of the One-Cop-Moves Game on Planar Graphs
Cops and robbers is a vertex-pursuit game played on graphs. In the classical
cops-and-robbers game, a set of cops and a robber occupy the vertices of the
graph and move alternately along the graph's edges with perfect information
about each other's positions. If a cop eventually occupies the same vertex as
the robber, then the cops win; the robber wins if she can indefinitely evade
capture. Aigner and Frommer established that in every connected planar graph,
three cops are sufficient to capture a single robber. In this paper, we
consider a recently studied variant of the cops-and-robbers game, alternately
called the one-active-cop game, one-cop-moves game or the lazy-cops-and-robbers
game, where at most one cop can move during any round. We show that Aigner and
Frommer's result does not generalise to this game variant by constructing a
connected planar graph on which a robber can indefinitely evade three cops in
the one-cop-moves game. This answers a question recently raised by Sullivan,
Townsend and Werzanski.Comment: 32 page
Recommended from our members
Observing Turbulent Fragmentation in Simulations: Predictions for CARMA and ALMA
Determining the initial stellar multiplicity is a challenging problem since protostars are faint and deeply embedded at early times; once formed, multiple protostellar systems may significantly dynamically evolve before they are optically revealed. Interferometers such as Combined Array for Research in Millimeter-wave Astronomy (CARMA) and Atacama Large Millimeter/submillimeter Array (ALMA) make it possible to probe the scales at which turbulent fragmentation occurs in dust continuum emission, potentially constraining early stellar multiplicity. In this Letter, we present synthetic observations of starless and protostellar cores undergoing fragmentation on scales of a few thousand astronomical units to produce wide binary systems. We show that interferometric observations of starless cores by CARMA should be predominantly featureless at early stages, although wide protostellar companions should be apparent. The enhanced capabilities of ALMA improve the detection of core morphology so that it may be possible to detect substructure at earlier times. In either case, spatial filtering from interferometry reduces the observed core substructure and often eradicates traces of existing filamentary morphology on scales down to 0.025 pc. However, some missing structure may be recaptured by combining data from the ALMA full science and Atacama compact arrays.Astronom
The influence of the turbulent perturbation scale on prestellar core fragmentation and disk formation
The collapse of weakly turbulent prestellar cores is a critical stage in the
process of star formation. Being highly non-linear and stochastic, the outcome
of collapse can only be explored theoretically by performing large ensembles of
numerical simulations. Standard practice is to quantify the initial turbulent
velocity field in a core in terms of the amount of turbulent energy (or some
equivalent) and the exponent in the power spectrum (n \equiv -d log Pk /d log
k). In this paper, we present a numerical study of the influence of the details
of the turbulent velocity field on the collapse of an isolated, weakly
turbulent, low-mass prestellar core. We show that, as long as n > 3 (as is
usually assumed), a more critical parameter than n is the maximum wavelength in
the turbulent velocity field, {\lambda}_MAX. This is because {\lambda}_MAX
carries most of the turbulent energy, and thereby influences both the amount
and the spatial coherence of the angular momentum in the core. We show that the
formation of dense filaments during collapse depends critically on
{\lambda}_MAX, and we explain this finding using a force balance analysis. We
also show that the core only has a high probability of fragmenting if
{\lambda}_MAX > 0.5 R_CORE (where R_CORE is the core radius); that the dominant
mode of fragmentation involves the formation and break-up of filaments; and
that, although small protostellar disks (with radius R_DISK <= 20 AU) form
routinely, more extended disks are rare. In turbulent, low-mass cores of the
type we simulate here, the formation of large, fragmenting protostellar disks
is suppressed by early fragmentation in the filaments.Comment: 11 pages, 7 figures; accepted for publication by MNRA
- …
