7,317 research outputs found
Preliminary survey of 21st century civil mission applications of space nuclear power
The purpose was to collect and categorize a forecast of civilian space missions and their power requirements, and to assess the suitability of an SP-100 class space reactor power system to those missions. A wide variety of missions were selected for examination. The applicability of an SP-100 type of nuclear power system was assessed for each of the selected missions; a strawman nuclear power system configuration was drawn up for each mission. The main conclusions are as follows: (1) Space nuclear power in the 50 kW sub e plus range can enhance or enable a wide variety of ambitious civil space mission; (2) Safety issues require additional analyses for some applications; (3) Safe space nuclear reactor disposal is an issue for some applications; (4) The current baseline SP-100 conical radiator configuration is not applicable in all cases; (5) Several applications will require shielding greater than that provided by the baseline shadow-shield; and (6) Long duration, continuous operation, high reliability missions may exceed the currently designed SP-100 lifetime capabilities
A novel topology for a HEMT negative current mirror
A new solution for the implementation of a HEMT negative current source is presented. The topology can be also profitably employed as a current mirror and as an active load in high-gain MMICs voltage amplifiers. A small-signal model of the proposed circuit is developed which allows to find accurate expressions for the required transfer functions (i.e., the output impedance of the current source, and the current gain of the circuit when operated as a current mirror). Design examples using Philips PML ED02AH GaAs PHEMT process are provided. Spice simulations show that a 10- kW output impedance for the current source and a 35dB voltage gain for a differential pair loaded with the proposed current mirror are easily achieved
Flowing fibers as a proxy of turbulence statistics
The flapping states of a flexible fiber fully coupled to a three-dimensional
turbulent flow are investigated via state-of-the-art numerical methods. Two
distinct flapping regimes are predicted by the phenomenological theory recently
proposed by Rosti et al. [Phys. Rev. Lett. 121, 044501, 2018]: the under-damped
regime, where the elasticity strongly affects the fiber dynamics, and the
over-damped regime, where the elastic effects are strongly inhibited. In both
cases we can identify a critical value of the bending rigidity of the fiber by
a resonance condition, which further provides a distinction between different
flapping behaviors, especially in the under-damped case. We validate the theory
by means of direct numerical simulations and find that, both for the
over-damped regime and for the under-damped one, fibers are effectively slaved
to the turbulent fluctuations and can therefore be used as a proxy to measure
various two-point statistics of turbulence. Finally, we show that this holds
true also in the case of a passive fiber, without any feedback force on the
fluid
Metastability for reversible probabilistic cellular automata with self--interaction
The problem of metastability for a stochastic dynamics with a parallel
updating rule is addressed in the Freidlin--Wentzel regime, namely, finite
volume, small magnetic field, and small temperature. The model is characterized
by the existence of many fixed points and cyclic pairs of the zero temperature
dynamics, in which the system can be trapped in its way to the stable phase.
%The characterization of the metastable behavior %of a system in the context of
parallel dynamics is a very difficult task, %since all the jumps in the
configuration space are allowed. Our strategy is based on recent powerful
approaches, not needing a complete description of the fixed points of the
dynamics, but relying on few model dependent results. We compute the exit time,
in the sense of logarithmic equivalence, and characterize the critical droplet
that is necessarily visited by the system during its excursion from the
metastable to the stable state. We need to supply two model dependent inputs:
(1) the communication energy, that is the minimal energy barrier that the
system must overcome to reach the stable state starting from the metastable
one; (2) a recurrence property stating that for any configuration different
from the metastable state there exists a path, starting from such a
configuration and reaching a lower energy state, such that its maximal energy
is lower than the communication energy
Sum of exit times in series of metastable states in probabilistic cellular automata
Reversible Probabilistic Cellular Automata are a special class
of automata whose stationary behavior is described by Gibbs--like
measures. For those models the dynamics can be trapped for a very
long time in states which are very different from the ones typical
of stationarity.
This phenomenon can be recasted in the framework of metastability
theory which is typical of Statistical Mechanics.
In this paper we consider a model presenting two not degenerate in
energy
metastable states which form a series, in the sense that,
when the dynamics is started at one of them, before reaching
stationarity, the system must necessarily visit the second one.
We discuss a rule for combining the exit times
from each of the metastable states
Metastability and small eigenvalues in Markov chains
In this letter we announce rigorous results that elucidate the relation
between metastable states and low-lying eigenvalues in Markov chains in a much
more general setting and with considerable greater precision as was so far
available. This includes a sharp uncertainty principle relating all low-lying
eigenvalues to mean times of metastable transitions, a relation between the
support of eigenfunctions and the attractor of a metastable state, and sharp
estimates on the convergence of probability distribution of the metastable
transition times to the exponential distribution.Comment: 5pp, AMSTe
Rejection of randomly coinciding events in ZnMoO scintillating bolometers
Random coincidence of events (particularly from two neutrino double beta
decay) could be one of the main sources of background in the search for
neutrinoless double beta decay with cryogenic bolometers due to their poor time
resolution. Pulse-shape discrimination by using front edge analysis, mean-time
and methods was applied to discriminate randomly coinciding events in
ZnMoO cryogenic scintillating bolometers. These events can be effectively
rejected at the level of 99% by the analysis of the heat signals with rise-time
of about 14 ms and signal-to-noise ratio of 900, and at the level of 92% by the
analysis of the light signals with rise-time of about 3 ms and signal-to-noise
ratio of 30, under the requirement to detect 95% of single events. These
rejection efficiencies are compatible with extremely low background levels in
the region of interest of neutrinoless double beta decay of Mo for
enriched ZnMoO detectors, of the order of counts/(y keV kg).
Pulse-shape parameters have been chosen on the basis of the performance of a
real massive ZnMoO scintillating bolometer. Importance of the
signal-to-noise ratio, correct finding of the signal start and choice of an
appropriate sampling frequency are discussed
Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements
Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have
started to replace Wet Dilution Refrigerators (WDR) due to the ease and low
cost of operation. However these advantages come at the cost of increased
vibrations, induced by the pulse tube. In this work, we present the vibration
measurements performed on three different commercial DDRs. We describe in
detail the vibration measurement system we assembled, based on commercial
accelerometers, conditioner and DAQ, and examined the effects of the various
damping solutions utilized on three different DDRs, both in the low and high
frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250
g) germanium bolometers in the best vibration-performing system under study and
report on the results
Perturbative analysis of disordered Ising models close to criticality
We consider a two-dimensional Ising model with random i.i.d. nearest-neighbor
ferromagnetic couplings and no external magnetic field. We show that, if the
probability of supercritical couplings is small enough, the system admits a
convergent cluster expansion with probability one. The associated polymers are
defined on a sequence of increasing scales; in particular the convergence of
the above expansion implies the infinite differentiability of the free energy
but not its analyticity. The basic tools in the proof are a general theory of
graded cluster expansions and a stochastic domination of the disorder
- …
