478 research outputs found
Flexible control of the Peierls transition in metallic C polymers
The metal-semiconductor transition of peanut-shaped fullerene (C)
polymers is clarified by considering the electron-phonon coupling in the uneven
structure of the polymers. We established a theory that accounts for the
transition temperature reported in a recent experiment and also suggests
that is considerably lowered by electron doping or prolonged irradiation
during synthesis. The decrease in is an appealing phenomenon with regard
to realizing high-conductivity C-based nanowires even at low
temperatures.Comment: 3 pages, 3 figure
Phonon dispersion and electron-phonon interaction in peanut-shaped fullerene polymers
We reveal that the periodic radius modulation peculiar to one-dimensional
(1D) peanut-shaped fullerene (C) polymers exerts a strong influence on
their low-frequency phonon states and their interactions with mobile electrons.
The continuum approximation is employed to show the zone-folding of phonon
dispersion curves, which leads to fast relaxation of a radial breathing mode in
the 1D C polymers. We also formulate the electron-phonon interaction
along the deformation potential theory, demonstrating that only a few set of
electron and phonon modes yields a significant magnitude of the interaction
relevant to the low-temperature physics of the system. The latter finding gives
an important implication for the possible Peierls instability of the C
polymers suggested in the earlier experiment.Comment: 9 pages, 8 figure
Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System
Rough surface effect on the Meissner diamagnetic current in the normal layer
of proximity contact N-S bi-layer is investigated in the clean limit. The
diamagnetic current and the screening length are calculated by use of
quasi-classical Green's function. We show that the surface roughness has a
sizable effect, even when a normal layer width is large compared with the
coherence length . The effect is as large as that
of the impurity scattering and also as that of the finite reflection at the N-S
interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-
Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures
We study the linear diamagnetic response of a superconducting cylinder coated
by a normal-metal layer due to the proximity effect using the clean limit
quasiclassical Eilenberger equations. We compare the results for the
susceptibility with those for a planar geometry. Interestingly, for
the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at
the interface to the superconductor it can be less than (-1/2) of the applied
field. Even for , the diamagnetism can be increased as compared to the
planar case, viz. the magnetic susceptibility becomes smaller than
-3/4. This behaviour can be explained by an intriguing spatial oscillation of
the magnetic field in the normal layer
Far-infrared study of the Jahn-Teller distorted C60 monoanion in C60 tetraphenylphosphoniumiodide
We report high-resolution far-infrared transmission measurements on C(60)-tetraphenylphosphoniumiodide as a function of temperature. In the spectral region investigated (20-650 cm(-1)), we assign intramolecular modes of the C(60) monoanion and identify low-frequency combination modes. The well-known F(1u)(1) and F(1u)(2) modes are split into doublers at room temperature, indicating a D(5d) or D(3d) distorted ball. This result is consistent with a dynamic Jahn-Teller effect in the strong-coupling limit or with a static distortion stabilized by low-symmetry perturbations. The appearance of silent odd modes is in keeping with symmetry reduction of the hall, while activation of even modes is attributed to interband electron-phonon coupling and orientational disorder in the fulleride salt. Temperature dependences reveal a weak transition in the region 125-150 K in both C(60)(-) and counterion modes, indicating a bulk, rather than solely molecular, effect. Anomalous softening (with decreasing temperature) in several modes may correlate with the radial character of those vibrations. [S0163-1829(98)03245-7]
Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases
C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present
infrared and Raman spectra of these materials and show how the rotor-stator
nature is reflected in their vibrational properties. We measured the
vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8)
resulting from a solid state reaction occurring on heating. Based on the
spectra we propose a connection pattern for the fullerene in poly(C60C8H8),
where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal
with green or blue light a photochemical reaction was observed leading to a
similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd
version: minor changes in wording, accepted version by journa
Pfmrk, a MO15-related protein kinase from Plasmodium falciparum. Gene cloning, sequence, stage-specific expression and chromosome localization.
Cyclin-dependent kinases (Cdks) play a central role in the regulation of the eukaryotic cell cycle. A novel gene encoding a Cdk-like protein, Pfmrk, has been isolated from the human malaria parasite Plasmodium falciparum. The gene has no introns and comprises an open reading frame encoding a protein of 324 amino acids with a predicted molecular mass of 38 kDa. Database searches revealed a striking similarity to the Cdk subfamily with the highest similarity to human MO15 (Cdk7). The overall sequence of Pfmrk shares 62% similarity and 46% identity with human MO15, in comparison to the 49-58% similarity and 34-43% identity with other human Cdks. Pfmrk contains two unique inserts: one consisting of 5 amino acids just before the cyclin-binding motif and the other composed of 13 amino acids within the T-loop equivalent region. Southern blots of genomic DNA digests and chromosomal separations showed that Pfmrk is a single-copy gene conserved between several parasite strains and is located on chromosome 10. A 2500-nucleotide transcript of this gene is expressed predominantly in the sexual blood stages (gametocytes), suggesting that Pfmrk may be involved in sexual stage development
Glycan multivalency effects toward albumin enable N-glycan-dependent tumor targeting
© 2016 Elsevier Ltd. All rights reserved.Multivalent interactions play an essential role in molecular recognition in living systems. These effects were employed to target tumor cells using albumin clusters bearing ∼10 molecules of asparagine-linked glycans (N-glycans). Noninvasive near-infrared fluorescence imaging clearly revealed A431 tumors implanted in BALB/cA-nu/nu mice after 1 h in an N-glycan structure-dependent manner, thereby demonstrating the efficient use of glycan multivalency effects for tumor targeting in vivo
Chemogenetic activation of mammalian brain neurons expressing insect Ionotropic Receptors by systemic ligand precursor administration.
Chemogenetic approaches employing ligand-gated ion channels are advantageous regarding manipulation of target neuronal population functions independently of endogenous second messenger pathways. Among them, Ionotropic Receptor (IR)-mediated neuronal activation (IRNA) allows stimulation of mammalian neurons that heterologously express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the original protocol, phenylacetic acid, a ligand of the IR84a/IR8a complex, was locally injected into a brain region due to its low permeability of the blood-brain barrier. To circumvent this invasive injection, we sought to develop a strategy of peripheral administration with a precursor of phenylacetic acid, phenylacetic acid methyl ester, which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. This strategy was validated by electrophysiological, biochemical, brain-imaging, and behavioral analyses, demonstrating high utility of systemic IRNA technology in the remote activation of target neurons in the brain
- …
